Part Number Hot Search : 
FR151 M28C64 MC1741C MAX32 BCW61 STC945N GC70F PCA95
Product Description
Full Text Search
 

To Download TDAT042G51A-3BLL1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Addendum May 2001
TDAT SONET/SDH 155/622/2488 Mbits/s Data Interfaces
Introduction
The TDAT data interface is available in three different configurations as summarized in Table 1.
TDAT04622
The TDAT04622 device contains a subset of the TDAT042G5 device. The TDAT04622 device functions as described in the TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Data Sheet (DS98-193SONT-4) with the following limitations:
s s
Quad OC-3 operation only or single OC-12 operation only. Single UTOPIA port.
TDAT021G2
The TDAT021G2 device contains a subset of the TDAT042G5 device. The TDAT021G2 device functions as described in the TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Data Sheet (DS98-193SONT-4) with the following limitations:
s s
Quad OC-3 operation only or dual OC-12 operation only. Two UTOPIA ports.
TDAT042G5
The TDAT042G5 device contains all functionality as described in the TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Data Sheet (DS98-193SONT-4). Table 1. TDAT Device Product Line Device OC-3 TDAT04622 4 (A, B, C, D) 4 (A, B, C, D) Line Ports OC-12 1 (A) 2 (A, B) OC-48 NA 1 (A) 2 (A, B) UTOPIA Ports Ports Present Modes U2, U2+, U3, U3+ s 8-bit s 16-bit U2, U2+, U3, U3+ s 8-bit s 16-bit s 32-bit U2, U2+, U3, U3+ s 8-bit s 16-bit s 32-bit
TDAT021G2
NA
TDAT042G5
4 (A, B, C, D)
4 (A, B, C, D)
1 (16-bit parallel multiplexed/ demultiplexed)
4 (A, B, C, D)
TDAT SONET/SDH 155/622/2488 Mbits/s Data Interfaces
Data Addendum May 2001
For additional information, contact your Agere Systems Account Manager or the following: INTERNET: http://www.agere.com E-MAIL: docmaster@micro.lucent.com N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC Tel. (86) 21 50471212, FAX (86) 21 50472266 JAPAN: Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 EUROPE: Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Copyright (c) 2001 Agere Systems Inc. All Rights Reserved Printed in U.S.A.
May 2001 DA01-010SONT (Replaces DA00-001SONT and must accompany DS98-193SONT-4)
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
System Programming (SP)
SP1. Required Provisioning Sequence and Clocks
The core registers must be written prior to provisioning any other registers (1) to establish the internal clock rates for the device, and (2) because writing to certain core registers resets the remainder of the device. Certain clocks must be present to read/write registers prior to provisioning the device. One of the following clocks must be present prior to provisioning to enable register access:
I I
TxCKP and TxCKN MPU clock (microprocessor interface synchronous mode only)
Provisioning must be implemented in the following sequence:
I I I
Core register 0x0010 (mode) must be provisioned first Core register 0x0011 (channel [A--D] control) second Remainder of the core registers must then be provisioned (order does not matter)
It is recommended, but not required, that the remainder of the device be provisioned in the following order:
I I
OHP PT, and DE blocks (order does not matter) , UT block to turn on the data source to the master and slave
Workaround Provisioning must be implemented in the following sequence:
I I
Apply either TxCKP and TxCKN or MPU clock. Provision core: -- Mode, register 0x0010 -- Channel [A--D] control, register 0x0011 -- Remainder of the core
Corrective Action Not applicable. Use above procedure in provisioning the device.
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
System Programming (SP) (continued)
SP2. Behavior During Loss of Receive Line Clock
All state and counter values will be held at their current values when Rx line clock has been lost. The device will not automatically multiplex in the Tx line clock when the Rx line clock is lost. Workaround System software should monitor loss of line clock bits in the receive/transmit state register (addresses 0x040A-- 0x040D) and ignore all other alarms. This condition must be serviced as a major failure event. Corrective Action This is informational only. No corrective action is required for this condition.
SP3. PT Register Addressing
Addresses for the PT error counter registers are as follows:
I I I I
Channel A: 0x09B3 to 0x09E3 Channel B: 0x09EF to 0x0A20 Channel C: 0x0A2C to 0x0A5C Channel D: 0x0A68 to 0x0A98
Note: The reserved address space between the error counter registers is not symmetric. (The reserved space between channels B and C is 0x003D, and the reserved space between channels A and B and channels C and D is 0x003C.) Workaround This is informational only. No workaround is available for this condition. Corrective Action No corrective action is required for this condition.
2
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Microprocessor Interface (MPU)
MPU1. Interface to Motorola* MC68360 Processor Is Not Glueless
The interface between the Motorola MC68360 processor and TDAT042G5 requires intervening logic because of the following incompatibilities in the specifications of these two devices. For a 33 MHz microprocessor clock rate, the Motorola MC68360 series processors can be interfaced to TDAT042G5 without intervening glue logic, if used without DT and if programmed for six wait-states. If a user wishes not to use the wait-states, then the chip select applied to TDAT042G5 must be held low until the address changes. Details are given below. Chip Select Timing The TDAT042G5 CS input signal requirements are not compatible with the Motorola MC68360 series processor CSx output signals. TDAT042G5 timing does not allow simultaneous deassertion of CS and ADS signals. Chip select applied to TDAT042G5 must be held low for at least 5 ns after the MC68360 deasserts ADS. Workaround: Use external glue logic to decode the address to generate CS, or provide microprocessor interface signals meeting the requirements of TDAT042G5. DT Timing If the Motorola MC68360 processor CSx signal is used to drive the TDAT042G5 CS, then TDAT042G5 DT output does not satisfy the MC68360 processor DSACK timing requirement. DT is not pulled to 1 before it is placed in a high-impedance state. This causes the next MPU cycle to be terminated early. Workaround: Place a 1 k resistor from DT to VDDD. Corrective Action Corrective action for MPU1 has not been determined.
MPU2. Synchronous Microprocessor Interface Mode Is Nonfunctional
The synchronous microprocessor interface mode, MPMODE = 1 (pin D8), functions as described in the advance data sheet, but causes data errors. Placing TDAT042G5 in the synchronous mode and placing a clock on MPCLK (pin C8) will cause the data passing through the device to be corrupted. Data errors are generated at a rate of 1% or less of corrupted packets. Workaround Use the TDAT042G5 in the asynchronous microprocessor mode, MPMODE = 0, with no clock applied to MPCLK. Corrective Action This condition will be resolved in version 1A of the device.
* Motorola is a registered trademark of Motorola, Inc.
Agere Systems Inc.
3
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
Core Registers (CR)
CR1. Clear on Read/Clear on Write Behavior
Bit 6 of line provisioning register 0x0010 sets the functionality of the COR/W registers. Table 1. COR/W Settings of Register 0x0010, Bit 6 Bit 6 1 0 Mode COR COW Bit Clear Behavior of Accessed Registers After COR has been set (address 0x0010, bit 6 = 1), all registers that are accessed are cleared when read. After COW has been set (address 0x0010, bit 6 = 0), a 1 must be written to a given bit in a given register to clear that bit. Writing a 0 to a bit in a given register does not clear that bit.
Workaround This is informational only. No workaround is available for this condition. Corrective Action This condition will be described in revision 4 of the advance data sheet.
Line Interface (LI)
LI1. STS-48/STM-16 Mode Lacks Facility Loopback
There is no facility loopback function (line input to line output) available in STS-48/STM-16 mode. Facility loopback is available only in STS-12/STM-4 and STS-3/STM-1 modes as described in the advance data sheet. Workaround This function is not a feature of TDAT042G5. Corrective Action No corrective action is required for this condition.
4
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Path Terminator (PT)
PT1. Signal Degrade (SD) and Signal Fail (SF) Bit Behavior
Receive signal degrade and receive signal fail bits in the PT state registers (addresses 0x0838, 0x088A, 0x08DC, and 0x092E, bits [1:0]) do not function as described. Until the signal degrade (SD) and signal fail (SF) thresholds are programmed, the SD and SF bits will toggle on a frame-by-frame basis. Workaround Program thresholds during system software initialization. Corrective Action This functionality will be retained in its current state in future versions of the device. The advance data sheet will be corrected to reflect the actual function of the registers.
PT2. Clear-After-Write Behavior of Signal Degrade Clear Bits
Signal degrade clear (bits 15--12) of the PT one-shot control parameters register (address 0x0AA4) are described as one-shot, clear-after-write bits. Writing these bits should automatically set and then clear the bits. This one-shot behavior is not observed. Workaround The bits must be set to 1 and then explicitly set to 0 to clear these signal degrade bits. Corrective Action This functionality will be retained in its current state in future versions of the device. The advance data sheet will be corrected to reflect the actual function of the registers.
Agere Systems Inc.
5
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
Path Terminator (PT) (continued)
PT3. Remote Defect Indicator (RDI) Behavior
The SONET standards require that when an RDI changes value, it should hold the value for a minimum of 20 frames. This applies to a no error state, which should be maintained for at least 20 consecutive frames. However, it is also intended by the SONET standard that the occurrence of an error state should be reported immediately. TDAT042G5 responds to error conditions within 100 ms (ANSI *T1.105 which states only that RDI-L must be generated or removed within 100 ms of detecting or terminating an incoming defect), in which case the two requirements become functionally the same. Single-bit and enhanced RDI behave differently under the following conditions:
I I
Transition from error state to no error state. While in the error state, a subsequent error occurs.
The single-bit error RDI does not hold the no error state for 20 frames. However, the enhanced RDI does hold the no error state for 20 consecutive frames. Workaround No workaround is available for this condition. Corrective Action The enhanced RDI indicator in future versions of the device will behave the same as the single-bit error indicator.
PT4. SS Pointer Interpretation Algorithm
The SDH standards do not require that the SS bits are set to binary 10 for SDH equipment. The SS bit values are not used in determining a valid pointer value. Because of this, the SS pointer interpretation algorithm is not implemented in the device. Bit 5 (RSSPTRNORM[A--D]) of PT control registers 0x0AA6, 0xAAE, 0x0AB6, and 0x0ABE is not used. Bits 1 and 0 (RSSEXP[1:0]) of PT provisioning register 0x0AC7 are not used. Workaround No workaround is available for this condition. Corrective Action These bits will be removed from the PT registers in future revisions of the advance data sheet.
* ANSI is a registered trademark of American National Standards Institute, Inc.
6
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Path Terminator (PT) (continued)
PT5. Delta/Event Registers in COR Mode
Because there is a one-cycle delay before the PT delta event registers (0x802, 0x080F, 0x081C, 0x0829) are cleared after being read in COR mode, new interrupts may be lost. Workaround No workaround is available for this condition. Corrective Action This condition will be addressed in future versions of the device.
Data Engine (DE)
DE1. SDL Mode--Header Error Correction in LSB
In SDL mode, the header error correction process is susceptible to single-bit errors in the least significant bit (LSB) of the special payload. Workaround No workaround is available for this condition. Corrective Action This condition will be addressed in future versions of the device.
DE2. Incorrect ATM Loss of Cell Delineation (LCD) Implementation
Currently, the LCD is implemented in the same way that out of cell delineation (OCD) is implemented. This is not in accordance with the ITU-TI.432-2 February 1999 standard. Workaround No workaround is available for this condition. Corrective Action A software workaround will be available with version 1A of the device.
Agere Systems Inc.
7
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
Data Engine (DE) (continued)
DE3. ATM Transmit Count of Idle Cells
For ATM mode in the transmit direction, all cells are currently counted, including the idle cells. Only the cells containing data should be counted. Workaround No workaround is available for this condition. Corrective Action This condition will be addressed in version 1A of the device.
DE4. Channel Provisioning
When using the device in STS-3/STM-1 and STS-12/STM-4 modes with either PPP, CRC, or HDLC, egress configuration registers 0x1016, 0x1017, 0x1018, and sequencer cell state register 0x1036 of all four channels must be provisioned, even if a channel is not being used. Workaround Provision all four transmit DE channels. Set DE egress configuration registers and the sequencer cell state register as shown in Table 2. Table 2. Transmit DE Egress and Sequencer Cell State Registers Address Value STS-3/STM-1 0x1016 0x1017 0x1018 0x1019--0x1021 0x1036 Corrective Action This condition will be addressed in future versions of the device. 0x4567 0x4567 0x4567 -- 0x0000 STS-12/STM-4 0x4567 0x4567 0x4567 0x4567 0x0000
8
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Data Engine (DE) (continued)
DE5. Packet Behavior in POS/SDL Mode--Dry Mode
When the device is configured in POS mode with dry mode enabled, the following conditions may persist:
I
PPP mode; STS-48/STS-12/STS-3. When running in PPP mode, the PPP header--0xFF03 0x0021 (provisionable)--may be incorrectly inserted at any point in a packet within the outgoing data stream when the FIFO runs dry, thereby corrupting the packet. Packets being sent are corrupted if the FIFO runs dry. PPP and CRC modes; STS-48/STS-12/STS-3. CRC, PPP and HDLC modes; STS-48/STS-12/STS-3. , In PPP, CRC, and HDLC dry modes, some of the packet data may be corrupted when the packet length is above a certain size where size is dependent upon UT clock rate and low watermark setting. Either sections of the packet may be lost or additional packets may be inserted.
I
Workaround Several workarounds are possible:
I I
Do not provision dry mode for this device. If dry mode is provisioned: -- Do not allow the FIFO to be emptied. -- Run the UTOPIA clock fast enough, as shown in Table 3, so that the FIFO is never empty. -- Use a larger external FIFO to buffer the data. -- Do not allow the packet size to exceed the low watermark.
Table 3. Required UTOPIA Clock (TxCLK) Rates Mode STS-48/STM-16 STS-12/STM-4 STS-3/STM-1 Corrective Action This condition will be corrected in version 1A of the device. TxCLK and Rate TxCLK > 77 MHz (U3+, 32-bit mode) TxCLK > 40 MHz TxCLK > 10 MHz
Agere Systems Inc.
9
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
Data Engine (DE) (continued)
DE6. Incorrect ATM Out of Cell Delineation (OCD) Implementation
In ATM mode, the OCD reporting for channels B, C, and D is incorrect. The OCD state of channel A is reported for channels B, C, and D. The OCD reporting is correct for channel A. Workaround No workaround is available for this condition. Corrective Action This condition will be corrected in version 1A of the device.
DE7. Incorrect Frame State of ATM Data Streams
When sending a single ATM data stream to channel A, the frame states of channels B, C, and D are incorrectly set to sync mode. This prevents LCD errors from being reported on channel A as well. In addition, when sending a single ATM data stream to channels B, C, or D, the frame states always remain in hunt mode. This results in LCD errors on those channels. Workaround No workaround is available for this condition. Corrective Action A software workaround will be available with version 1A of the device.
10
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Data Engine (DE) (continued)
DE8. Clearing DE Interrupt Register (0x1002)
DE interrupt register 0x1002 is incorrectly defined in the revision 3 of the data sheet as RO. DE interrupt register 0x1002 is correctly defined as a COR/W register. However, register 0x1002 must be used in the COR mode (register 0x0010 bit 6 set to 1). The bits of register 0x1002 are explained in detail in Table 4. Table 4. Register 0x1002: DE Interrupt (COR/W) Bits 15--12 Mode RO Clear Behavior of Register 0x1002
11--0
To clear these SDL Rx frame state interrupt bits, read and clear their associated interrupt source registers (addresses 0x14E0--0x14E3). COR or COW To properly clear these bits, device must be in COR mode (address 0x0010, bit 6) (address 0x0010, bit 6 = 1).
Workaround This is informational only. No workaround is available for this condition. Corrective Action This behavior will be described in future revisions of the advance data sheet.
DE9. Single Packet Transmission in HDLC-CRC, SDL-CRC, and PPP Modes
When receiving in either PPP or CRC mode, a single packet may not pass through the device. This occurs when the end of packet (which contains the CRC) never reaches the UT FIFO. The ingress channel suspends transfer to the UT when there is no end of packet in the FIFO. These bytes are transferred to the UT when the next packet is received. This problem will affect HDLC-CRC, SDL-CRC, and PPP modes. Workaround There are two possible workarounds:
I
Set ingress payload type and mode control registers (0x1040--0x1043) to CRC strip mode. However, in CRC-16 mode, single packets may still get stuck if CRC ends on bytes A or B. Send a minimum 4-byte dummy packet after each packet.
I
Corrective Action This condition will be addressed in future versions of the device.
Agere Systems Inc.
11
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
Data Engine (DE) (continued)
DE10. Excessive HDLC Flag Characters
The following three issues refer to HDLC flag character (0x7E) problems in the data engine:
I
An excessive number of HDLC flag characters (0x7Es) may be inserted between packets on the transmit side if the UTOPIA low watermark value is set above 2. This will have the effect of reducing the bandwidth of the device. The data engine operates on 32-bit boundaries. Egress packets that are not multiples of four will be filled with 0x7Es. Egress packets consisting of all 0x7Es as data will be corrupted.
I
I
Workaround Set the UTOPIA egress low watermark value in the UTOPIA egress provisioning registers (0x0212, 0x0216, 0x021A, 0x021E) to either 1 or 2 to prevent excessive 0x7Es from being inserted between packets. Corrective Action This condition will be addressed in future versions of the device.
UTOPIA (UT)
UT1. Polling in Multidevice MPHY Mode
When the TDAT042G5 is polled and responds, the data bus becomes enabled. In a multidevice MPHY configuration, if the data bus is active from a different PHY device, response to a poll from the device will corrupt a data transfer already in progress. TDAT042G5 MPHY always functions without data corruption in a single-device (slave), multiple-channel configuration (point-to-point). Workaround No workaround is available for this condition. Corrective Action This condition will be addressed in future versions of the device.
12
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
UTOPIA (UT) (continued)
UT2. UTOPIA Clock Limitations
The maximum speed of the UTOPIA interface is 104 MHz. When operating at clock speeds greater than 52 MHz, RxCLK[D:A] must be placed in source mode and will use the same external clock as the corresponding TxCLK[D:A] clock. RxCLK[D:A] source mode is set by provisioning bit 6 (CLOCK_MODE_Rx) for channel A of the UTOPIA receive provisioning registers (address 0x020F). When operating at speeds less than 52 MHz, separate external clocks for RxCLK[D:A] and TxCLK[D:A] may be used. Workaround This is informational only. No workaround is available for this condition. Corrective Action This condition will be addressed in future versions of the device. Design modifications will be directed towards allowing a maximum interface speed of 104 MHz in all cases. Note that UTOPIA Level 3 clock architecture has changed in the ATM Forum's UTOPIA Level 3 specification as of the July 1998 version.
UT3. PMRST Register Value Invalid After Reset
The value in PMRST_PECTx[A--D] (addresses 0x020B through 0x020E) is invalid after reset until the second PMRST clock period is completed. After the second PMRST, the register value is valid. Workaround Always have the system software execute a read of PMRST_PECTx as part of the system initialization following a reset. Corrective Action This condition will be addressed in future versions of the device.
Agere Systems Inc.
13
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
UTOPIA (UT) (continued)
UT4. FIFO Overflow and Error Reporting
If the RxFIFO overflows, RxEOP is not asserted as expected. Therefore, when errors occur, two packets will be corrupted instead of one because two start of packets (SOPs) occurred without an end of packet (EOP). RxERR is not asserted when the above overflow condition occurs. No effect is noticeable in the ATM mode. Channel A works as expected; this problem occurs in channels B, C, and D. Workaround This error is detectable in the status registers. No workaround is available for this condition. Corrective Action This condition will be addressed in future versions of the device.
UT5. Timing Difference Between Direct and Polled Status Modes
In the receive direction of the MPHY mode, RxPA[A] shows the polled packet (or ATM) available status for all four slices, while the RxPA[B], RxPA[C], and RxPA[D] show the direct status states of their respective FIFOs. In some cases, the status of RxPA[A] does not agree with the status of RxPA[D:B]. The direct status indication has one additional cycle of pipeline delay from that of the polled status. Workaround This is informational only. No workaround is available for this condition. Corrective Action No corrective action is required for this condition.
UT6. UTOPIA Interface D Nonfunctional in Some Mixed MPHY and Point-to-Point Configurations
When TDAT042G5 is configured with slice D in a point-to-point mode, slice D is nonfunctional in one special case. If UTOPIA interfaces A and B are configured for 32-bit MPHY operation with slice C as part of the polled channels, interface D will be nonfunctional and cannot be independently configured in a UTOPIA Level 2 point-to-point mode. This condition does not occur in 16-bit MPHY operation. Workaround For mixed MPHY and point-to-point configuration, use UTOPIA slice D for MPHY mode instead of slice C. UTOPIA slice C will then be available for normal point-to point mode. Corrective Action This condition will be addressed in future versions of the device.
14
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
UTOPIA (UT) (continued)
UT7. Response to 0x1F MPHY Address
TDAT042G5 MPHY currently generates a polled status response to the address 0x1F (the null address), which is not compliant with the UTOPIA Level 2 standard. The address 0x1F is valid for UTOPIA Level 3 operation. Workaround No workaround is available for this condition. Corrective Action This condition will be addressed in future versions of the device.
UT8. Far-End Loopback Bandwidth Limitations
In the STS-48/STM-16 mode (U3, U3+), looping back data at the far end (UTOPIA interface) can only be accomplished without cell/packet corruption at rates below the following, as shown in Table 5. Table 5. Cell/Packet Corruption Rates Mode STS-48/STM-16 STS-12/STM-4 STS-3/STM-1 ATM 300 Mbits/s 70 Mbits/s 30 Mbits/s Packet Rate not yet determined Rate not yet determined Rate not yet determined
When cell/packet corruption occurs, the device reports transmit FIFO underflow. Workaround No workaround is available for this condition. Corrective Action This condition will be addressed in future versions of the device.
Agere Systems Inc.
15
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
UTOPIA (UT) (continued)
UT9. Clock Requirements for MPHY Modes
When using the TDAT042G5 in MPHY mode, receive and transmit clocks must be provided for all channels (A, B, C, and D). Also, the packet available (PA) signal for each channel must be provided on each channel's associated PA pin. Workaround It is possible to place RxCLK[D:A] into source mode by provisioning bit 6 (CLOCK_MODE_Rx) of the UTOPIA receive provisioning registers (addresses 0x020F, 0x0213, 0x0217, 0x021B). This will eliminate the need to supply separate receive and transmit clocks. Corrective Action This is informational only. No corrective action is required for this condition.
UT10. Egress Packet Mode Overflows
In the UTOPIA modes listed below, the device will report transmit packet overflow errors when no overflows have occurred. This occurs when the egress high watermark is set for the UTOPIA modes as shown in Table 6. Table 6. Settings at Which Overflows Reported in Error UTOPIA Modes 8-bit, U3+ 16-bit, U2+ 32-bit, U3+ Workaround Set the egress high watermark threshold as shown in Table 7. If there is a delay between TxPA deassertion and TxENB deassertion, the additional cycles should also be accounted for when setting the threshold. Table 7. Settings to Prevent Overflows Reported in Error UTOPIA Modes 8-bit, U3+ 16-bit, U2+ 32-bit, U3+ Corrective Action This condition will be addressed in future versions of the device. Egress High Watermark Thresholds <0x3D <0x3B <0x37 Egress High Watermark Thresholds 0x3D 0x3B 0x37
16
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
UTOPIA (UT) (continued)
UT11. Clearing UT Interrupt Register
When a UT interrupt event occurs and COW mode is enabled, writing to UT interrupt register 0x0201 does not clear the register (this register is read-only). The interrupt is cleared by writing to the UT delta and event registers (addresses 0x0202--0x0205). Workaround This is informational only. No workaround is available for this condition. Corrective Action No corrective action is required for this condition.
UT12. Incorrect Implementation of POS Multi-PHY Mode
Because the TDAT042G5 lacks a selected PA signal (SPA), the status of a channel that is transmitting data in POS MPHY mode is not known during polling. Therefore, the PA signal cannot be used as a data valid signal. If the channel transmitting data runs dry, the master side may receive invalid data. Workaround Use direct status polling mode only and ensure that the address of channel A is applied to the address bus at all times, except during the clock cycle when another channel is being selected. Corrective Action No corrective action is required for this condition.
UT13. Invalid Extra Cycle Between EOP and SOP in CRC-16/32 Mode
When using the device in CRC-16 or CRC-32 mode, there is always an extra cycle between the end of packet (EOP) of the previous packet and the start of packet (SOP) of the following packet. Workaround This is informational only. No workaround is available for this condition. Corrective Action This is condition will be addressed in the future version of the device.
Agere Systems Inc.
17
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
UTOPIA (UT) (continued)
UT14. Nonfunctional RxPA Signal for Channels B and D in Packet Direct Status MPHY Mode
When using MPHY direct status for all operational modes (8-bit, 16-bit, and 32-bit), the RxPA signal for channels B and D is not functional. The RxPA signal is functional only for channels A and C. Workaround The TDAT UTOPIA interface currently has nonfunctioning RxPAB and RxPAD output signals when used in fourchannel Multi-PHY mode as shown in Figure 1. The result of this problem is the unavailability of direct status polling on the receive-side UTOPIA interface. To work around this problem, the following analysis is done to aid the user in doing a round-robin data extraction procedure.
INGRESS CHANNEL A FIFO A 256 bytes DEEP
RXPAA
32-bit INTERFACE (A AND B) INGRESS CHANNEL B FIFO B 256 bytes DEEP X RXPAB
INGRESS CHANNEL C FIFO C 256 bytes DEEP RXPAC
INGRESS CHANNEL D FIFO D 256 bytes DEEP X RXPAD
1664 (F)
Figure 1. Receive-Side UTOPIA Interface and Channel FIFOs
The rate at which data fills and drains the receive-side UTOPIA FIFOs is calculated as follows:
I I
The data enters each UTOPIA FIFO from the data engine bytewise running on a 77.76 MHz system clock. If we assume each channel (worst case) is filled with an STS-12c rate signal, then the amount of data (excluding SONET overhead, both section/line, path, and three stuff columns) per second is (87 x12 x 9 x 8000) - (4 x 9 x 8000) = 74.88 Mbytes/STS-12c/s or 599.040 Mbits/STS-12c/s. Since each FIFO contains a maximum of 256 bytes/FIFO, it takes on average (256/74,880,000) = 3.4188 s to fill a FIFO, and with a clock cycle of 77.76 MHz, it requires as a worst case, 3.2922 s to fill the FIFO. Since there are four FIFOs all receiving data at 74.88 Mbytes/s, then the total bandwidth requirements of all four channels combined is (4 x 74,880,000) = 299.52 Mbytes/s. The servicing rate on each FIFO is based on the UTOPIA interface width and frequency. If we assume a 32-bit A/B UTOPIA interface operating at 100 MHz, then the service rate is 400 Mbytes/s to service all the channels. Agere Systems Inc.
I
I
I
18
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
UTOPIA (UT) (continued)
I
The interface can drain an entire FIFO at a rate of 400 Mbytes/s. To drain 256 bytes, it requires a maximum of (256 / 400,000,000) = 0.64 s to drain a FIFO that is completely full. To drain all four FIFOs, it requires (0.64 x 4) = 2.56 s total.
For data to be efficiently removed from each of the Rx FIFOs, a round-robin extraction method must be employed since the RxPAB and RxPAD signals are not available for direct status polling. Since it requires a worst case total of 3.2922 s to fill a FIFO, the master must service all FIFOs in a manner such that it does not allow any particular FIFO to fill and hence overflow. Assuming equal servicing of each FIFO, the master must therefore not service any particular FIFO for longer than (3.2922 / 4) = 0.8231 s. This also must account for any dead cycles in a cycling between channels and any dead cycles on a particular channel (single dead cycle between EOP and SOP). When servicing four FIFOs, there is a maximum clock cycle penalty for switching between channels. For two-cycle mode, this penalty is a maximum of four UTOPIA master clock cycles; so to switch between all four channels, a total of up to sixteen master clock cycles may be required to perform all the switching. The value of four is worst case, and in some cases this can be as low as one cycle. The value of four results from the case where the FIFO drains while servicing that channel, which will be common when draining at the 100 MHz frequency. In that case, the master must first see that the FIFO has drained by observing that RxPAA is invalid on the last cycle while draining the FIFO (best case is one cycle lost). It must then deactivate RxENB and place a new channel address on the address bus on the following cycle (best case is one cycle lost). It must then activate RxENB for the new channel on the following cycle and have TDAT sample RxENB low (best case is one cycle lost). The TDAT will then output data two cycles later when using a PA response mode of two cycles (one cycle lost with data output on second cycle). Any additional delays by the master must be added to these to calculate a worst-case condition. The bestcase condition occurs when the master stops the data flow when there are still more than two data items contained within the FIFO. In this case, the master deactivates RxENB at some predetermined maximum 32-bit word drain value, where the PA response on the cycle prior to deactivation had valid data. For two-cycle mode, two additional data items will be output from the FIFO for that particular channel, if available. The master deactivates RxENB, places the new channel address on the FIFO, and activates RxENB. On the cycle where RxENB is activated, the last valid data item from the previous channel may be output (best case), and one dead cycle will follow this before data for the following selected channel is output. Given the information above, assume the worst case of four cycles between channel switching. Also assume the FIFOs are filling at a worst-case rate, 3.2922 s/FIFO. Assume the master is draining each FIFO using the 32-bit, 100 MHz, A/B, UTOPIA interface. Assume the master extracts a maximum of thirty 32-bit words (120 bytes) from each FIFO before switching to an alternate channel. This requires (30 x 10) = 300 ns/FIFO, and assume that it takes the worst-case four clock cycles to switch to alternate channels. Therefore, the total servicing time per FIFO is (300 + 4 x 10) = 340 ns/channel, and the total servicing time per four channels is (4 x 340) = 1.36 s per round robin servicing of all four channels. At this round-robin rate, a maximum of 120 bytes are serviced per channel per 1.360 s interval; so to service the total bytes per channel (74.88 Mbytes/s), it requires a total of 0.849 seconds, which is sufficient bandwidth to service all channels. Since the FIFOs fill at the maximum rate of 1 byte/13.355 ns, each FIFO will fill to a depth of 102 bytes in the 1.360 s interval between channel servicing. This is well below the overflow threshold, which is set by the user to a value near the top of the FIFO (high watermark, 0x36 (216 bytes) default) and is below the number of bytes serviced by the master per channel per round-robin servicing (120 bytes). Each customer's servicing characteristics will depend on the master's behavior and how fast it performs the channel switching. If it cannot switch in the worstcase, four-cycle manner described above, performance will degrade. One item not accounted for in the above analysis is the fact that TDAT may place a dead cycle between packets (in CRC and PPP modes, not in HDLC mode). In this case, there can be a maximum of three dead cycles per FIFO (assuming 40-byte packets worst case and 102 bytes in FIFO between round-robin cycle). This will be taken up by the slack provided above, where (102 bytes + 4 bytes/dead cycle x 3 dead cycles) = 114 bytes, which still falls below the servicing rate of 120 bytes per round-robin servicing.
Agere Systems Inc.
19
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
UTOPIA (UT) (continued)
The logical flow of the above procedure is shown in Figure 2 below:
SELECT NEXT CHANNEL
HOLD ADDRESS OF SELECTED CHANNEL ON ADDRESS BUS NO PA = 1
YES
YES COUNT < 30
NO
DEACTIVATE RXENB
1665 (F)
Figure 2. Master Control Flow Chart
Select channel If PA = 1 continue If count = 30 words, then deactivate RxENB and switch to new channel Else continue with current channel Else deactivate RxENB and switch to next channel Return to selection of new channel Corrective Action This is condition will be addressed in the future version of the device.
20
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Overhead Processor (OHP)
OHP1. Maximum BER Count
The maximum number of errors the device can report is limited to 5.00E-04 in STS-12/STM-4 mode and 1.00E-04 in STS-48/STM-16 mode. This applies to the SDLSET, SDLCLEAR, SFLSET, and SFLCLEAR bits of the signal degrade and signal fail BER algorithm OHP registers. These bits are shown in Table 8. Table 8. Signal Degrade and Signal Fail Algorithm OHP Registers [6:3] OHP Bits* OHP_SDLSET[A--D][3:0] OHP_SDLCLEAR[A--D][3:0] OHP_SFLSET[A--D][3:0] OHP_SFLCLEAR[A--D][3:0] Addresses 0x043B, 0x043D, 0x043F, 0x0441 0x0447, 0x0449, 0x044B, 0x044D 0x0453, 0x0455, 0x0457, 0x0459 0x045F, 0x0461, 0x0463, 0x0465
* The OHP prefix shown here will be added to the current bit names in revision 4 of the advance data sheet.
Workaround This is informational only. No workaround is available for this condition. Corrective Action No corrective action is required for this condition.
OHP2. RDI-L Reporting
When the device is initially powered up, it defaults to STS-48/STM-16 mode. This locks a counter value into transmit control registers for channels B, C, and D. When the device is configured for STS-3/STM-1 mode, the counter does not automatically clear. Workaround During STS-3/STM-1 OHP configuration in the system code, manually clear transmit control registers 0x0431, 0x0433, and 0x0435 for channels B, C, and D. In order to clear these transmit control registers, the bits must be toggled. The following pseudocode shows how to clear the bits on channels B, C, and D: Set address 0x0431 to 0x007F # set bits on channel B Set address 0x0431 to 0x0000 # clear bits on channel B Set address 0x0433 to 0x007F # set bits on channel C Set address 0x0433 to 0x0000 # clear bits on channel C Set address 0x0435 to 0x007F # set bits on channel D Set address 0x0435 to 0x0000 # clear bits on channel D Corrective Action This is informational only. No corrective action is required for this condition.
Agere Systems Inc.
21
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
Overhead Processor (OHP) (continued)
OHP3. M1 Error Counter in STS-48/STM-16 Mode
When the device receives REI-L errors in the STS-48/STM-16 mode, no M1 errors are reported. Workaround There are several workarounds for this problem:
I I I
Pass the B2 error count value to the far end through system software. Process the M1 byte from the receive TOAC with an external FPGA. Pass the B2 error count from the receive to the transmit direction using transmit TOAC capability. The error count must be inserted into the eleventh Z2 byte in an STS-48/STM-16 transmit signal. The transmit TOAC signal is driven by an external device with software insert capability. Pass the B2 error count from the receive to the transmit direction in the section overhead byte. The device has F1 and S1 monitor capability; the protocol for sending the error message to the far end with F1 or S1 bytes is userdefined.
I
Corrective Action This condition will be addressed in future versions of the device.
Packaging and Pinouts (P)
P1. Pin F5 (Previously JTEST) Is No Connect (NC)
Item deleted. Corrected in the advance data sheet.
P2. Modified Pinout and Power Supply Configuration--Future Versions
Item deleted. No modifications to the power supply configuration will be made.
P3. Change to TDAT042G5 Version 1 Pinout
Item deleted. All devices conform to power pin assignments as listed in the advance data sheet.
22
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Packaging and Pinouts (P) (continued)
P4. Power Dissipation
The worst-case power dissipation of TDAT042G5 is currently estimated to be 7.5 W. The minimum and maximum power dissipation is listed in Table 9, as well as the relative package thermal characteristics. Table 9. Power Dissipation and Relative Package Thermal Characteristics Parameter Power Dissipation: Minimum Maximum Thermal Performance (JEDEC standard conditions)* Correlation Factor Between Die and Case Temperatures Symbol PD STS-3/STM-1 line rate STS-12/STM-4 and STS-48/ STM-16 line rates Standard JEDEC 4-layer PWB: I Standard natural convection I 200 LFPM airflow I 800 LFPM airflow Standard JEDEC 4-layer PWB: I Standard natural convection I 200 LFPM airflow I 800 LFPM airflow -- -- 3 6 -- -- W W Test Conditions Min Typ Max Unit
JA
-- -- -- -- -- --
9 6.5 5 0.3 0.4 0.5
-- -- -- -- -- --
C/W C/W C/W C/W C/W C/W
JC
* JA = (TJ - TA)/PD: TJ = junction temperature, TA = ambient temperature of medium surrounding the package, PD = electrical power dissipated by the device. JC = (TJ - TC)/PD: TJ = junction temperature, TC = package temperature (top, dead-center), PD = electrical power dissipated by the device.
Maximum junction temperature of TDAT042G5 is 125 C. Therefore, maximum case temperature under natural convection conditions must be less than approximately 50 C, and in this case, an external heat sink is required. References Jeff Weiss, 600 LBGA Thermal Test Report, February 25, 1999. HL250C 3.3 Volt 0.25 m CMOS Standard-Cell Library (MN98-060ASIC-02), pages 2-2 and 2-3. Workaround An external heat sink is required. Corrective Action Power consumption will be addressed in future versions of the device.
Agere Systems Inc.
23
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
Data Addenda
DA1. Incorrect PT Control Register Mapping
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Advance Data Sheet, Rev. 3 lists the following bit mapping for PT control registers 0x0AAA, 0x0AB2, 0x0ABA, and 0x0AC2: bit #9 TRDIP_PLMPINH[A--D] bit #8 TRDIP_UNEQUIPINH[A--D] bit #7 TRDIP_LCDINH[A--D] The correct bit mapping is the following: bit #9 TRDIP_LCDINH[A--D] bit #8 TRDIP_PLMPINH[A--D] bit #7 TRDIP_UNEQUIPINH[A--D] Workaround No workaround is available for this condition. Corrective Action This correct bit mapping will be included in July 2000 of the advance data sheet.
DA2. Variable Change
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Advance Data Sheet, Rev. 3 lists the variable TRD_LCDINH[A--D], which has been changed to TRD_LCD[A--D] in the January 2001 revision. Workaround No workaround is available for this condition. Corrective Action This correction will be included in January 2001 of the advance data sheet.
24
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
AY99-013SONT-2 Replaces AY99-013SONT to Incorporate the Following Updates
1. Page 1, SP1. Required Provisioning Sequence and Clocks, added new issue. 2. Page 8, DE4. Channel Provisioning, added new issue. 3. Page 9, DE5. Packet Behavior in POS/SDL Mode--Dry Mode, added new issue. 4. Page 15, UT8. Far-End Loopback Bandwidth Limitations, added new issue. 5. Page 16, advance data sheet document number corrected.
AY99-013SONT-3 Replaces AY99-013SONT-2 to Incorporate the Following Updates
1. Page 1, notice that the advisory issues still apply to the advance data sheet which has just been updated.
AY99-013SONT-4 Replaces AY99-013SONT-3 to Incorporate the Following Updates
1. Replaced OC- designation with STS- and STM- throughout advisory. 2. Page 2, SP2. Behavior During Loss of Receive Line Clock, added new issue. 3. Page 2, SP3. PT Register Addressing, added new issue. 4. Page 4, CR1. Clear on Read/Clear on Write Behavior, added new issue. 5. Page 5, PT2. Clear-After-Write Behavior of Signal Degrade Clear Bits, corrected description. 6. Page 6, PT4. SS Pointer Interpretation Algorithm, added new issue. 7. Page 7, PT5. Delta/Event Registers in COR Mode, added new issue. 8. Page 7, DE2. Incorrect ATM Loss of Cell Delineation (LCD) Implementation, identified the specific ITU standard with which the LCD implementation does not comply. 9. Page 8, DE4. Channel Provisioning, Table Transmit DE Egress and Sequencer Cell State Registers, corrected register 0x102D to 0x1021. 10. Page 9, DE5. Packet Behavior in POS/SDL Mode--Dry Mode, identified dry mode issues. 11. Page 10, DE6. Incorrect ATM Out of Cell Delineation (OCD) Implementation, added new issue. 12. Page 10, DE7. Incorrect Frame State of ATM Data Streams, added new issue. 13. Page 11, DE8. Clearing DE Interrupt Register (0x1002), added new issue. 14. Page 11, DE9. Single Packet Transmission in HDLC-CRC, SDL-CRC, and PPP Modes, added new issue. 15. Page 12, DE10. Excessive HDLC Flag Characters, added new issue. 16. Page 13, UT2. UTOPIA Clock Limitations, clarified wording. 17. Page 14, UT4. FIFO Overflow and Error Reporting, clarified wording. 18. Page 16, UT9. Clock Requirements for MPHY Modes, added new issue. 19. Page 16, UT10. Egress Packet Mode Overflows, added new issue. 20. Page 17, UT11. Clearing UT Interrupt Register, added new issue. 21. Page 17, UT12. Incorrect Implementation of POS Multi-PHY Mode, added new issue. 22. Page 21, OHP1. Maximum BER Count, added new issue. In addition, differentiated OHP bits from PT bits with the same name; the names will be corrected in revision 4 of the advance data sheet.
Agere Systems Inc.
25
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
AY99-013SONT-4 Replaces AY99-013SONT-3 to Incorporate the Following Updates
(continued) 23. Page 21, OHP2. RDI-L Reporting, added new issue. 24. Page 22, OHP3. M1 Error Counter in STS-48/STM-16 Mode, added new issue. 25. Page 22, removed issue P1. Pin 5 (Previously JTEST) Is No Connect (NC). Pin F5 was corrected to NC in the accompanying advance data sheet, DS98-193SONT-3. 26. Page 22, removed issue P2. Modified Pinout and Power Supply Configuration--Future Versions. Plans for 2.5 V power ring implementation considered, but no schedule available at this time. 27. Page 22, removed issue P3. Change to TDAT042G5 Version 1 Pinout. Listed pins have been corrected to NC in the accompanying advance data sheet, DS98-193SONT-3. 28. Page 24, DA1. Incorrect PT Control Register Mapping, added new issue.
AY01-015SONT (Replaces AY99-013SONT-4 and Must Accompany DS98-193SONT-4) Replaces AY99-013SONT-4 to Incorporate the Following Updates
Change List
This change list summarizes changes across the various versions of this document starting with the version dated 1/25/01.
1/25/01
1. Page 6, PT3. Remote Defect Indicator (RDI) Behavior, clarified wording. 2. Page 12, DE 11. ATM Header Error Correction (HEC) Behavior, added entire section to document.
1/29/01
1. Page 24, DA1. Incorrect PT Control Register Mapping, changed corrective action description to include the July 2000 date. 2. Page 24, DA2. Variable Change, added entire section to document.
2/13/01
1. Page 12, updated issue on DE 11. ATM Header Error Correction (HEC) Behavior, to include more information. 2. Page 17, added issue UT13. Invalid Extra Cycle Between EOP and SOP in CRC-16/32 Mode. 3. Page 18, added issue UT14. Nonfunctional RxPA Signal for Channels B and D in Packet Direct Status MPHY Mode.
3/1/01
1. Page 12, removed DE 11 from document. 2. Page 18, UT14. Nonfunctional RxPA Signal for Channels B and D in Packet Direct Status MPHY Mode, added workaround to document.
26
Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Notes
Agere Systems Inc.
27
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory May 2001
For additional information, contact your Agere Systems Account Manager or the following: INTERNET: http://www.agere.com E-MAIL: docmaster@micro.lucent.com N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC Tel. (86) 21 50471212, FAX (86) 21 50472266 JAPAN: Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 EUROPE: Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 Technical Inquiries:GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Copyright (c) 2001 Agere Systems Inc. All Rights Reserved Printed in U.S.A.
May 2001 AY01-015SONT (Replaces AY99-013SONT-4 and Must Accompany DS98-193SONT-4)
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Features
I
Point-to-point path termination device for interface termination. Versatile IC supports 155/622/2488 Mbits/s SONET/SDH interface solutions for packet over SONET (POS), asynchronous transfer mode (ATM), or simplified data link (SDL) for data over fiber applications. Supports point-to-point and multi-PHY UTOPIA. Low-power 3.3 V operation, CMOS technology. High-speed I/O is LVPECL. All other logic has 5 V tolerant TTL-level inputs. -40 C to +85 C temperature range. 600 LBGA package.
I
I I I
I I
-- ITU-T G.707: Network Node Interface for the Synchronous Digital Hierarchy. -- ITU-T G.803: Architecture of Transport Networks Based on the Synchronous Digital Hierarchy. -- T1.105: SONET-Basic Description including Multiplex Structure, Rates, and Formats. -- T1.105.02 SONET-Payload Mappings. -- T1.105.03 SONET-Jitter at Network Interfaces. -- T1.105.06 SONET Physical Layer Specifications. -- T1.105.07 SONET-Sub-STS-1 Interface Rates and Formats Specification. -- ITU-T I.432: B-ISDN User-Network InterfacePhysical Layer Specification. -- IETF RFC 2615 (June 1999): PPP over SONET/SDH. -- IETF RFC 1661: The Point-to-Point Protocol (PPP). -- IETF RFC 1662: PPP in HDLC-like Framing.
SONET/SDH Interface
I
Termination of quad STS-3/STM-1, quad STS-12/ STM-4, or single STS-48/STM-16. Supports overhead processing for transport and path overhead bytes. Optional insertion and extraction of overhead bytes via serial overhead interface. Full path termination and SPE extraction/insertion. SONET/SDH compliant condition and alarm reporting. Handles all concatenation levels of STS-3c through STS-48c (in multiples of 3; i.e., 3c, 6c, 9c, etc.), STM-1 through STM-16. Built-in diagnostic loopback modes. Compliant with the following Telcordia (Bellcore), ANSI*, and ITU standards: -- GR-253 CORE: SONET Transport Systems: Common Generic Criteria.
Data Processing
I
I
Provisionable data engine supports payload insertion/extraction and CRC-16/-32 generation/verification for ATM cell or PPP SDL, or HDLC streams. , Maintains counts for cell/packet traffic (e.g., total number of cells, number of discarded cells). Integrated UTOPIA Level 2- and UTOPIA Level 3compatible ATM physical layer interface with packet extensions for all test and operations. Insertion and extraction of up to four separate data channels. Compliant with 1998:ATM Forum, ITU standards, and IETF standards.
I
I
I I
I
I
I
I
I I
Microprocessor Interface
I
16-bit address and 16-bit data interface with up to 66 MHz read and write access. Compatible with most industry-standard processors.
I
*ANSI is a registered trademark of American National Standards Institute, Inc. Telcordia is a registered trademark of Bell Communications Research, Inc.
Please see the Description section, page 11, for details.
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Table of Contents
Contents Page
Features ................................................................................................................................................................... 3 SONET/SDH Interface ........................................................................................................................................... 3 Data Processing ..................................................................................................................................................... 3 Microprocessor Interface .......................................................................................................................................3 Description ..............................................................................................................................................................11 Pin Information .......................................................................................................................................................11 Overview .................................................................................................................................................................45 ATM/HDLC/HDLC-CRC/PPP Support .................................................................................................................47 SDL Support ........................................................................................................................................................48 Over-Fiber Mode ..................................................................................................................................................49 Test and General-Purpose I/O Support ...............................................................................................................49 External Interfaces ...............................................................................................................................................49 Functional Description ............................................................................................................................................50 Line Interface Block .............................................................................................................................................51 SONET Framer ....................................................................................................................................................53 Overhead Processor (OHP) Block .......................................................................................................................53 Path Terminator (PT) Block .................................................................................................................................62 Data Engine (DE) Block .......................................................................................................................................70 UTOPIA (UT) Interface Block ...............................................................................................................................84 JTAG (Boundary-Scan) Test Block ....................................................................................................................100 Line Interface ........................................................................................................................................................100 LVPECL I/O Termination and Load Specifications ............................................................................................100 Interface Description .............................................................................................................................................101 Microprocessor Interface ...................................................................................................................................101 General-Purpose I/O Bus (GPIO) ......................................................................................................................102 Interrupts ............................................................................................................................................................103 Reset ..................................................................................................................................................................104 Performance Monitor Reset (PMRST) ...............................................................................................................104 Loopback Operation ...........................................................................................................................................106 System Interfaces ..............................................................................................................................................107 Register Access Description .................................................................................................................................111 Register Maps ......................................................................................................................................................112 Core Registers ...................................................................................................................................................112 UT Registers ......................................................................................................................................................113 OHP Registers ...................................................................................................................................................116 PT Registers ......................................................................................................................................................126 DE Registers ......................................................................................................................................................138 Register Descriptions ...........................................................................................................................................147 Core Registers ...................................................................................................................................................147 UT Registers ......................................................................................................................................................154 OHP Registers ...................................................................................................................................................165 PT Registers ......................................................................................................................................................192 DE Registers ......................................................................................................................................................211 Absolute Maximum Ratings ..................................................................................................................................253 Handling Precautions ...........................................................................................................................................253 Operating Conditions ............................................................................................................................................254 Electrical Characteristics ......................................................................................................................................254
4
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Table of Contents (continued)
Contents Page
Interface Timing Specifications .............................................................................................................................255 Microprocessor Interface Timing ........................................................................................................................255 Line Interface I/O Timing ....................................................................................................................................264 UTOPIA Interface Timing ...................................................................................................................................268 Transport Overhead Access Channel (TOAC) Interface Timing ........................................................................271 Reference of SONET/SDH Terms and Comparisons ...........................................................................................273 Definitions of SONET/SDH Bytes ......................................................................................................................273 SONET/SDH Comparisons ................................................................................................................................274 SONET/SDH New Terminology .........................................................................................................................274 Outline Diagram ....................................................................................................................................................275 600-Pin LBGA ....................................................................................................................................................275 Ordering Information .............................................................................................................................................276 DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following Updates ......................................276
Agere Systems Inc.
5
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
List of Figures
Contents Page
Figure 1. Pin Diagram of 600-Pin LBGA (Bottom View) .........................................................................................11 Figure 2. Overview Block Diagram .........................................................................................................................45 Figure 3. Interface Block Diagram ..........................................................................................................................46 Figure 4. External Interface Summary Diagram .....................................................................................................49 Figure 5. Functional Block Diagram .......................................................................................................................50 Figure 6. Signal Degrade and Failure Parameters for BER ...................................................................................56 Figure 7. Pointer Interpreter State Diagram ...........................................................................................................62 Figure 8. STS-48 Signal Carrying One STS-48c Frame ........................................................................................65 Figure 9. STS-48 Signal Carrying Four STS-12c Frames ......................................................................................66 Figure 10. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-3c Frame ..........................66 Figure 11. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-12c Frame (Channel A), One STS-9c Frame (Channel B), One STS-6c Frame (Channel C), and One STS-3c Frame (Channel D) .67 Figure 12. Quad STS-3 Configuration With Each STS-3 Signal Carrying One STS-2c Frame ..............................67 Figure 13. Block Diagram of Date Engine (DE) ......................................................................................................70 Figure 14. State Diagram for the X31 Scrambler Synchronization Process ...........................................................72 Figure 15. General Structure of SDL Packets ........................................................................................................72 Figure 16. Uncompressed and Compressed PPP Packets ....................................................................................75 Figure 17. Example of Tx/Rx Sequencer Configuration: STS-48c into Single OC-48 Signal .................................78 Figure 18. Example of Tx/Rx Sequencer Configuration: 4xSTS-12c into Four Independent OC-12 Signals .........79 Figure 19. SONET Multiplexing: 2-Stage Byte Interleaving Example .....................................................................80 Figure 20. Example of Tx/Rx Sequencer Configuration: 4xSTS-3c into Four Independent OC-3 Signals .............81 Figure 21. TDAT042G5 Over-Fiber Modes: SDL, ATM (X31) ................................................................................82 Figure 22. UT Block Diagram .................................................................................................................................84 Figure 23. Receive-Side Interface Handshaking in Point-to-Point, Single Cycle Mode .........................................91 Figure 24. Receive-Side Interface Handshaking in Point-to-Point, Two-Cycle Mode ............................................92 Figure 25. Transmit-Side Interface Handshaking in Point-to-Point, Single Cycle Mode ........................................95 Figure 26. Multi-PHY Configuration of All Four Channels ......................................................................................96 Figure 27. TxPA Two-Cycle Responses of a Multi-PHY for All Four Channels ...................................................... 98 Figure 28. RxPA Responses of a Multi-PHY for All Four Channels (PA Response Configured for One Cycle) ....99 Figure 29. GPIO Functionality ..............................................................................................................................102 Figure 30. Interrupt Functionality ..........................................................................................................................103 Figure 31. Miscellaneous Functionality ................................................................................................................104 Figure 32. Loopback Operation ............................................................................................................................106 Figure 33. Quad ATM UTOPIA 2 ..........................................................................................................................107 Figure 34. Single ATM UTOPIA 3 ........................................................................................................................108 Figure 35. Quad POS UTOPIA 2 ..........................................................................................................................109 Figure 36. Single POS UTOPIA 3 ........................................................................................................................110 Figure 37. 32-bit MPHY UTOPIA 3 .......................................................................................................................110 Figure 38. Microprocessor Interface Synchronous Write Cycle (MPMODE (Pin D8) = 1) ....................................256 Figure 39. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin D8) = 1) ...................................258 Figure 40. Microprocessor Interface Asynchronous Write Cycle Description (MPMODE (Pin D8) = 0) ...............260 Figure 41. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin D8) = 0) ..................................262 Figure 42. Receive Line-Side Timing Waveform ..................................................................................................264 Figure 43. Transmit Line-Side Timing Waveform--STS-48/STM-16 Contraclocking ...........................................265 Figure 44. Transmit Line-Side Timing Waveform--Frame Synch ........................................................................265 Figure 45. Transmit Line-Side Timing Waveform--STS-48/STM-16 Forward Clocking ......................................265 Figure 46. Transmit UTOPIA Interface Timing .....................................................................................................268 Figure 47. Receive UTOPIA Interface Timing ......................................................................................................269 Figure 48. Transmit TOAC Interface Timing .........................................................................................................271 Figure 49. STS-12/STM-4 and STS-48/STM-16 Receive TOAC Interface Timing ...............................................272 Figure 50. STS-3/STM-1 Receive TOAC Interface Timing ...................................................................................272 6 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
List of Tables
Contents Page
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order .......................................................................12 Table 2. Pin Assignments for 600-Pin LBGA by Signal Name ...............................................................................17 Table 3. Pin Descriptions--Line Interface Signals .................................................................................................22 Table 4. Pin Descriptions--TOH Interface Signals .................................................................................................27 Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals ..........................................................................28 Table 6. Pin Descriptions--Microprocessor Interface Signals ................................................................................40 Table 7. Pin Descriptions--General-Purpose I/O Signals: Interface Signals .........................................................41 Table 8. Pin Descriptions--JTAG Interface Signals ...............................................................................................42 Table 9. Pin Descriptions--Power Signals .............................................................................................................43 Table 10. Pin Descriptions--No Connect Pins .......................................................................................................44 Table 11. Optional Offset Field ...............................................................................................................................48 Table 12. Line Interface Modes ..............................................................................................................................51 Table 13. Clock Settings for CLKDIV Pin ...............................................................................................................52 Table 14. R/T TOH Interface Rates ........................................................................................................................53 Table 15. TOAC Byte Insertion: An STS-3/STM-1 Example ..................................................................................53 Table 16. Ns, L, M, and B Values to Set the BER Indicator ...................................................................................57 Table 17. Ns, L, M, and B Values to Clear the BER Indicator ................................................................................58 Table 18. TOAC Channel I/O vs. STS Number/Time Slot ......................................................................................59 Table 19. Types of Signal Labels ...........................................................................................................................64 Table 20. 1-bit Mode ...............................................................................................................................................64 Table 21. 3-bit Mode (Enhanced RDI) ....................................................................................................................64 Table 22. Valid Concatenation Starting Locations: STS-Mc into an STS-48c ........................................................68 Table 23. Packet Length Field ................................................................................................................................73 Table 24. UTOPIA Traffic Types ............................................................................................................................85 Table 25. Standard 53-byte ATM Cell Structure .....................................................................................................86 Table 26. Bus Format for 16-bit Interface ...............................................................................................................86 Table 27. Bus Format for 8-bit Interface .................................................................................................................87 Table 28. Bus Format for 32-bit Interface ...............................................................................................................87 Table 29. Egress High Watermark Thresholds .......................................................................................................94 Table 30. Nominal dc Power for Suggested Terminations ...................................................................................100 Table 31. MPU Modes ..........................................................................................................................................101 Table 32. PMRST Provisioning ............................................................................................................................105 Table 33. Quad ATM UTOPIA 3 Interface ............................................................................................................107 Table 34. Quad POS UTOPIA 3 Interface ............................................................................................................109 Table 35. Register Address Space .......................................................................................................................111 Table 36. Map of Core Registers ..........................................................................................................................112 Table 37. Map of UT Registers .............................................................................................................................113 Table 38. Map of OHP Registers ..........................................................................................................................116 Table 39. Map of Path Terminator Registers ........................................................................................................126 Table 40. Map of DE Registers ............................................................................................................................138 Table 41. Register 0x0000: Device Version (RO) ................................................................................................147 Table 42. Registers 0x0001--0x0005: Device Name (RO) ..................................................................................147 Table 43. Register 0x0008: Composite Interrupts (RO or COR/W) ......................................................................148 Table 44. Register 0x000A: GPIO Input (RO) ......................................................................................................148 Table 45. Register 0x000C: Block Interrupt Masks (R/W) ....................................................................................149 Table 46. Register 0x000E: Core Resets (WO) ...................................................................................................149 Table 47. Register 0x000F: GPIO Output (R/W) ..................................................................................................150 Table 48. Register 0x0010: Line Provisioning/Mode (R/W) ..................................................................................150 Table 49. Register 0x0011: Channel (A--D) Control (R/W) .................................................................................151 Table 50. Register 0x0012: Loopback Control (R/W) ...........................................................................................151 Table 51. Register 0x0013: GPIO Mode (R/W) ....................................................................................................152 Agere Systems Inc. 7
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
List of Tables (continued)
Contents Page
Table 52. Registers 0x0014, 0x0015: GPIO Output Configuration .......................................................................152 Table 53. Register 0x001F: Scratch (R/W) ...........................................................................................................153 Table 54. Register 0x0200: UT Macrocell Version Number (RO) ........................................................................154 Table 55. Register 0x0201: UT Interrupt (RO) .....................................................................................................154 Table 56. Registers 0x0202, 0x0203, 0x0204, 0x0205: Channel [A--D] (COR) ..................................................155 Table 57. Register 0x0206: Interrupt Mask (R/W) ................................................................................................156 Table 58. Registers 0x0207, 0x0208, 0x0209, 0x020A: Interrupt Mask--Channel [A--D] (R/W) ........................156 Table 59. Register 0x020B: Channel [A--D] Error Count in PMRST Mode (RO) ................................................156 Table 60. Fields of the Provisioning Registers .....................................................................................................157 Table 61. Registers 0x020F, 0x0213, 0x0217, 0x021B: Channel [A--D] Receive Provisioning Register (R/W) .158 Table 62. Registers 0x0210, 0x0214, 0x0218, 0x021C: Channel [A--D] Transmit Provisioning Register (R/W) 159 Table 63. Registers 0x0211, 0x0215, 0x0219, 0x021D: Channel [A--D] Ingress Provisioning Register (R/W) ..161 Table 64. Registers 0x0212, 0x0216, 0x021A, 0x021E: Channel [A--D] Egress Provisioning Register (R/W) ...161 Table 65. Register 0x021F: Reset Register (R/W) ...............................................................................................162 Table 66. Register 0x0220: Channel [A--D] Error Count (RO) ............................................................................162 Table 67. Register 0x0224: UT_Scratch Register (R/W) ......................................................................................162 Table 68. Register 0x0225: PA Response Register (R/W) ...................................................................................163 Table 69. Register 0x0226: Size Mode Register (R/W) ........................................................................................164 Table 70. Register 0x0400: OHP Macrocell Version Number (RO) .....................................................................165 Table 71. Register 0x0401: OHP Interrupt (RO) ..................................................................................................165 Table 72. Registers 0x0402--0x0409: Delta/Event (COR/W) ..............................................................................165 Table 73. Registers 0x040A--0x040D: Receive/Transmit State (RO) .................................................................168 Table 74. Registers 0x040E, 0x0410, 0x0412, 0x0414: Mask Bits (R/W) ............................................................169 Table 75. Registers 0x040F, 0x0411, 0x0413, 0x0415: Mask Bits (R/W) ............................................................170 Table 76. Registers 0x0416--0x0419: Toggles (R/W) .........................................................................................171 Table 77. Registers 0x041A, 0x041C, 0x041E, 0x0420: Continuous N Times Detect (CNTD) Values (R/W) .....171 Table 78. Registers 0x041B, 0x041D, 0x041F, 0x0421: Continuous N Times Detect (CNTD) Values (R/W) .....172 Table 79. Registers 0x0422--0x042D: Receive Control (R/W) ............................................................................173 Table 80. Registers 0x042E: Transmit Control Port A (R/W) ...............................................................................177 Table 81. Registers 0x042F, 0x0431, 0x0433, 0x0435: Transmit Control (R/W) .................................................180 Table 82. Registers 0x0430, 0x0432, 0x0434: Transmit Control Port [B--D] (R/W) ............................................181 Table 83. Registers 0x0436--0x0439: Transmit Control (R/W) ...........................................................................184 Table 84. Registers 0x043A--0x0451: OHP Signal Degrade BER Algorithm Parameters (R/W) ........................185 Table 85. Registers 0x0452--0x0469: OHP Signal Fail BER Algorithm Parameters (R/W) ................................186 Table 86. Ns, L, M, and B Values to Set the BER Indicator .................................................................................187 Table 87. Ns, L, M, and B Values to Clear the BER Indicator ..............................................................................188 Table 88. Registers 0x046A--0x047D: B1, B2, M1 Error Count (RO) .................................................................189 Table 89. Registers 0x047E--0x0485: Transmit F1, S1, K2, K1 OH Insert Value (R/W) ....................................189 Table 90. Registers 0x0486--0x0491: Receive F1, S1, K2, K1 Monitor Value (RO) ...........................................190 Table 91. Registers 0x0492--0x04F9: Receive J0 Monitor Value (RO) ..............................................................190 Table 92. Registers 0x0512--0x0579: Transmit J0 Insert Value (R/W) ...............................................................190 Table 93. Registers 0x05AA--0x05C1: Transmit Z0 Insert Value (R/W) .............................................................191 Table 94. Register 0x05C2: Scratch Register (R/W) ............................................................................................191 Table 95. Register 0x0800: PT Macrocell Version Number (RO) .........................................................................192 Table 96. Register 0x0801: PT Interrupt (RO) ......................................................................................................192 Table 97. Registers 0x0802, 0x080F, 0x081C, 0x0829 and 0x0803, 0x0810, 0x081D, 0x082A: PT Delta/Event Parameters (COR/W) ..................................................................................................192 Table 98. Registers 0x0836--0x083B, 0x0868--0x0887, 0x0888--0x088D, 0x08BA--0x08D9, 0x08DA--0x08DF, 0x090C--0x092B, 0x092C--0x0931, 0x095E--0x097D: PT State Registers (RO) ......................................................................................................................194 Table 99. Register 0x097E: PT Interrupt Mask Control (R/W) .............................................................................195 8 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
List of Tables (continued)
Contents Page
Table 100. Registers 0x097F--0x0980, 0x098C--0x098D, 0x0999--0x099A, 0x09A6--0x09A7: PT Interrupt Mask Control (R/W) ............................................................................................................................196 Table 101. Registers (0x09B3, 0x09BF, 0x09CB, 0x09D7, 0x09E3), (0x09EF, 0x09FB, 0x0A07, 0x0A14, 0x0A20), (0x0A2C, 0x0A38, 0x0A44, 0x0A50, 0x0A5C), (0x0A68, 0x0A74, 0x0A80, 0x0A8C, 0x0A98): Error Counters (RO) ...........................................................................................................................198 Table 102. Register 0x0AA4: PT One-Shot Control Parameters (WO) ................................................................198 Table 103. Registers 0x0AA6--0x0AAD, 0x0AAE, 0x0AB5, 0x0AB6--0x0ABD, 0x0ABE--0x0AC5: PT Control Parameters (R/W) ............................................................................................................199 Table 104. Registers 0x0AC6--0x0AF7: PT Provisioning (R/W) .........................................................................205 Table 105. Registers 0x0ACC--0x0AD1: PT Signal Fail BER Algorithm Parameters (R/W) ...............................206 Table 106. Registers 0x0AD2--0x0AD7: PT Signal Degrade BER Algorithm Parameters (R/W) .......................207 Table 107. Ns, L, M, and B Values to Set the BER Indicator ...............................................................................208 Table 108. Ns, L, M, and B Values to Clear the BER Indicator ............................................................................209 Table 109. Registers 0x0AD8--0x0AF7: Transmit J1 Data Insert (R/W) .............................................................210 Table 110. Register 0x0AF8: Scratch Register (R/W) ..........................................................................................210 Table 111. Register 0x1000: DE Macrocell Version Number (RO) ......................................................................211 Table 112. Register 0x1001, 0x1002: DE Interrupts (0x1001 is RO, 0x1002 is RO and COR/W) .......................211 Table 113. Register 0x1004: Dry Escape Marker (R/W) ......................................................................................213 Table 114. Registers 0x1010--0x1015: Sequencer Provisioning Registers (R/W) ..............................................214 Table 115. Registers 0x1016--0x1021: Egress Configuration (R/W) ..................................................................215 Table 116. Registers 0x1022--0x102D: Ingress Configuration (R/W) .................................................................219 Table 117. Registers 0x102E--0x1031: Over-Fiber Mode (Packet-Over-Fiber or POF) Control (R/W) ..............223 Table 118. Registers 0x1032--0x1036: Sequencer Cell State Registers (R/W) ..................................................225 Table 119. Registers 0x1040--0x1043: Ingress Payload Type and Mode Control (R/W) ...................................225 Table 120. Receive Type and Mode Control Summary Table (Registers 0x1040--0x1043) ...............................226 Table 121. Registers 0x1080--0x1087: ATM Framer Idle Cell Match Mask (R/W) .............................................227 Table 122. Registers 0x1088--0x108F: ATM Idle Cell Registers (R/W) ..............................................................227 Table 123. Registers 0x1090--0x1097: ATM Unassigned Cell Match Mask (R/W) .............................................228 Table 124. Registers 0x1098--0x109F: ATM Unassigned Cell Registers (R/W) .................................................228 Table 125. Registers 0x10A0--0x10A3: ATM Framer State Registers (RO) .......................................................229 Table 126. Register 0x10A4: ATM X43 Frame Control (R/W) ..............................................................................229 Table 127. Register 0x10A5: ATM X31 Frame Control (R/W) ..............................................................................230 Table 128. Register 0x10A6: ATM X31 V/W Values (R/W) ..................................................................................230 Table 129. Register 0x10A7: ATM X31 X/Y Values (R/W) ...................................................................................231 Table 130. Register 0x10A8: ATM X31 Z Value (R/W) ........................................................................................231 Table 131. Register 0x10A9: Frame State Interrupt Mask (R/W) .........................................................................232 Table 132. Register 0x10AA: Scrambler State Interrupt Mask (R/W) ..................................................................232 Table 133. Register 0x10AB: ATM Receive Debug Register (R/W) .....................................................................233 Table 134. Registers 0x10B0--0x10B3: PPP Attach (R/W) .................................................................................234 Table 135. Registers 0x10E0--0x10E3: Egress Payload Type and Mode Control (R/W) ...................................234 Table 136. Transmit Type and Mode Control Summary Table (Registers 0x10E0--0x10E3) .............................235 Table 137. Registers 0x10F0--10FB: PPP Header Value Detach (R/W) ............................................................235 Table 138. Registers 0x10FC--0x10FF: PPP Header Detach Search (R/W) ......................................................236 Table 139. Registers 0x1100--0x1107: ATM/HDLC/SDL Framer--Condition Counter 1 (PMRST Update) (RO) .......................................................................................................................238 Table 140. Registers 0x1108--0x110F: ATM/HDLC/SDL Framer--Condition Counter 2 (PMRST Update) (RO) .......................................................................................................................239 Table 141. Registers 0x1110--0x1117: CRC Checker--Bad Packet Counter (PMRST Update) (RO) ...............240 Table 142. Registers 0x1118--0x111F: PPP Detach--Mismatched Header Counter (PMRST Update) (RO) ...241 Table 143. Registers 0x1120--0x1127: Receive Good Packet/Cell Counter (PMRST Update) (RO) .................242 Table 144. Registers 0x1128--0x112F: Transmit Good Packet/Cell Counter (PMRST Update) (RO) ................243 Agere Systems Inc. 9
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
List of Tables (continued)
Contents Page
Table 145. Registers 0x1180--0x1186: Interrupt Masks for Packet Counters (R/W) ..........................................243 Table 146. Registers 0x1181--0x1187: Interrupts for Packet Counters (COR/W) ..............................................244 Table 147. Registers 0x1200--0x1213, 0x12F0: ATM Transmit Registers (R/W) ...............................................244 Table 148. Registers 0x1400--0x1403: SDL State Registers (RO) .....................................................................246 Table 149. Registers 0x1470--0x1473: A Message Mailbox Registers (RO) ......................................................247 Table 150. Registers 0x1480--0x1483: A Message Mailbox Registers (RO) ......................................................247 Table 151. Registers 0x1490--0x1493: A Message Mailbox Registers (RO) ......................................................247 Table 152. Registers 0x14A0--0x14A3: B Message Mailbox Registers (RO) .....................................................247 Table 153. Registers 0x14B0--0x14B3: B Message Mailbox Registers (RO) .....................................................248 Table 154. Registers 0x14C0--0x14C3: B Message Mailbox Registers (RO) .....................................................248 Table 155. Registers 0x14D0--0x14D3: SDL Interrupt Masks (R/W) ..................................................................248 Table 156. Registers 0x14E0--0x14E3: SDL Interrupts (COR/W) ......................................................................249 Table 157. Register 0x14F0: SDL Receive Configuration Registers (R/W) .........................................................249 Table 158. Registers 0x1600--0x1607: SDL Transmit Registers (R/W) ..............................................................250 Table 159. Recommended Operating Conditions ................................................................................................254 Table 160. 3.3 V Logic Interface Characteristics ..................................................................................................254 Table 161. LVPECL Interface Characteristics ......................................................................................................254 Table 162. LVPECL 3.3 V Logic Interface Characteristics ...................................................................................255 Table 163. Microprocessor Interface Synchronous Write Cycle Specifications ...................................................257 Table 164. Microprocessor Interface Synchronous Read Cycle Specifications ...................................................259 Table 165. Microprocessor Interface Asynchronous Write Cycle Specifications ..................................................261 Table 166. Microprocessor Interface Asynchronous Read Cycle Specifications .................................................263 Table 167. Receive Line-Side Timing Specifications ...........................................................................................266 Table 168. Transmit Line-Side Timing Specifications ..........................................................................................267 Table 169. Transmit UTOPIA Interface Timing Specifications .............................................................................268 Table 170. Receive UTOPIA Interface Timing Specifications ..............................................................................269 Table 171. UTOPIA Interface Clock Specifications ..............................................................................................270 Table 172. Transmit TOAC Interface Timing Specifications .................................................................................271 Table 173. Receive TOAC Interface Timing Specifications ..................................................................................272 Table 174. SONET/SDH Comparisons ................................................................................................................274 Table 175. SONET/SDH New Terminology ..........................................................................................................274
10
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Description
The TDAT042G5 SONET/SDH interface device provides a versatile solution for quad STS-3/STM-1, quad STS-12/STM-4, and for single STS-48/STM-16 point-to-point datacom/telecom applications. Constructed using Agere Systems Inc.'s state-of-the-art CMOS technology, this device incorporates integrated SONET/SDH framing, section and line overhead insertion and extraction, path termination, and generation. The integrated circuit provides complete encapsulation and decapsulation for packet and ATM streams into and out of SONET/SDH payloads. Communication with the device is accomplished through a generic microprocessor interface. The device supports separate address and data buses. With the device, construction of all types of point-to-point STS-3/STS-12/STS-48 (STM-1/STM-4/ STM-16) data equipment is simplified and cost-reduced, allowing extremely efficient solutions.
Pin Information
TDAT042G5 is available in a 600-pin LBGA package. The pin diagram is shown in Figure 1. For convenience, pin assignments are listed by pin order in Table 1 and by signal name in Table 2. The pin descriptions as well as the pin assignments are listed in Table 3--Table 10 and are grouped by interface type.
AR AP AN AM AL AK AJ AH AG AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 33 35 10 12 14 16 18 20 22 24 26 28 30 32 34
5-7175(F)
Figure 1. Pin Diagram of 600-Pin LBGA (Bottom View)
Agere Systems Inc.
11
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order Pin A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 Signal Name VDDD VDDD GNDD GNDD VDDD VDDD GNDD GNDD DATA[1] DATA[6] DATA[10] DATA[15] GNDD ADDR[8] ADDR[12] GNDD VDDD VDDD NC GNDD NC NC GNDD NC NC NC GNDD GNDD GNDD VDDD VDDD GNDD GNDD VDDD VDDD Pin B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 Signal Name VDDD VDDD GNDD GNDD NC VDDA INT CS DATA[0] DATA[5] DATA[9] DATA[14] ADDR[3] ADDR[7] ADDR[11] ADDR[15] NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC GNDD GNDD VDDD VDDD Pin C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 Signal Name GNDD GNDD VDDD GNDD NC GNDA RST MPCLK DS DATA[4] DATA[8] DATA[13] ADDR[2] ADDR[6] ADDR[10] ADDR[14] NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC GNDD VDDD GNDD GNDD Pin D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 D35 Signal Name GNDD GNDD GNDD VDDD NC NC PMRST MPMODE R/W DATA[3] DATA[7] DATA[12] ADDR[1] ADDR[5] NC ADDR[13] NC NC NC NC NC NC NC NC NC NC VDDD NC NC NC NC VDDD GNDD GNDD GNDD
Note: NC refers to no connect. Do not connect pins so designated.
12
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued) Pin E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25 E26 E27 E28 E29 E30 E31 E32 E33 E34 E35 Signal Name VDDD NC VDDD PLL GNDD PLL VDDD NC ICT DT ADS DATA[2] VDDD DATA[11] ADDR[0] ADDR[4] ADDR[9] VDDD NC NC NC VDDD NC NC NC NC VDDD NC NC NC NC NC VDDD NC NC NC VDDD Pin F1 F2 F3 F4 F5 F31 F32 F33 F34 F35 G1 G2 G3 G4 G5 G31 G32 G33 G34 G35 H1 H2 H3 H4 H5 H31 H32 H33 H34 H35 J1 J2 J3 J4 J5 Signal Name VDDD TCK GNDD TMS NC NC NC NC NC VDDD GNDD TDO TRST NC TDI NC TxADDR[0] TxADDR[1] TxCLK[A] GNDD GNDD TxCKQP GNDD CLKDIV GNDD TxSZ[A] TxERR[A] TxPA[A] TxENB[A] GNDD TxD[14]N TxD[14]P TxD[15]N TxD[15]P TxCKQN Pin J31 J32 J33 J34 J35 K1 K2 K3 K4 K5 K31 K32 K33 K34 K35 L1 L2 L3 L4 L5 L31 L32 L33 L34 L35 M1 M2 M3 M4 M5 M31 M32 M33 M34 M35 Signal Name TxEOP[A] TxSOP/C[A] TxPRTY[A] TxDATA[A][15] TxDATA[A][14] TxD[12]N TxD[12]P TxD[13]N TxD[13]P VDDD TxDATA[A][13] TxDATA[A][12] TxDATA[A][11] TxDATA[A][10] TxDATA[A][9] TxD[10]N TxD[10]P TxD[11]N TxD[11]P VDDD VDDD TxDATA[A][8] TxDATA[A][7] TxDATA[A][6] TxDATA[A][5] TxD[8]N TxD[8]P TxD[9]N TxD[9]P VDDD TxDATA[A][4] TxDATA[A][3] TxDATA[A][2] TxDATA[A][1] TxDATA[A][0] Pin N1 N2 N3 N4 N5 N31 N32 N33 N34 N35 P1 P2 P3 P4 P5 P31 P32 P33 P34 P35 R1 R2 R3 R4 R5 R31 R32 R33 R34 R35 T1 T2 T3 T4 T5 Signal Name GNDD TxD[6]N TxD[6]P TxD[7]N TxD[7]P RxDATA[A][15] RxDATA[A][14] RxDATA[A][13] RxDATA[A][12] GNDD TxD[4]N TxD[4]P TxD[5]N VDDD TxD[5]P RxDATA[A][11] RxDATA[A][10] RxDATA[A][9] RxDATA[A][8] RxDATA[A][7] VDDD TxD[2]N/TxD[B]N TxD[2]P/TxD[B]P TxD[3]P/TxD[A]P TxD[3]N/TxD[A]N RxDATA[A][6] RxDATA[A][5] RxDATA[A][4] RxDATA[A][3] RxDATA[A][2] GNDD TxD[0]P/TxD[D]P TxD[1]N/TxD[C]N TxD[1]P/TxD[C]P VDDD
Note: NC refers to no connect. Do not connect pins so designated.
Agere Systems Inc.
13
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued) Pin T31 T32 T33 T34 T35 U1 U2 U3 U4 U5 U31 U32 U33 U34 U35 V1 V2 V3 V4 V5 V31 V32 V33 V34 V35 W1 W2 W3 W4 W5 W31 W32 W33 W34 W35 Signal Name VDDD RxDATA[A][1] RxDATA[A][0] RxPRTY[A] GNDD TxFSYNCN TxD[0]N/ TxD[D]N TxFSYNCP TxCKP TxCKN RxSOP/C[A] RxEOP[A] NC RxENB[A] VDDD VDDD VDDD GNDD
RxCKN/RxD[A]N RxCKP/RxD[A]P
Pin Y1 Y2 Y3 Y4 Y5 Y31 Y32 Y33 Y34 Y35 AA1 AA2 AA3 AA4 AA5 AA31 AA32 AA33 AA34 AA35 AB1 AB2 AB3 AB4 AB5 AB31 AB32
Signal Name GNDD RxD[13]N/ RxCLK[B]N RxD[13]P/ RxCLK[B]P GNDD VDDD VDDD TxSZ[B] TxCLK[B] TxADDR[3] GNDD
RxD[11]N/ RxCLK[C]N RxD[11]P/RxCLK[C]P RxD[12]N/RxD[C]N RxD[12]P/RxD[C]P
Pin
Signal Name
Pin AG1 AG2 AG3 AG4 AG5 AG31 AG32 AG33 AG34 AG35 AH1 AH2 AH3 AH4 AH5 AH31 AH32 AH33 AH34 AH35 AJ1 AJ2 AJ3 AJ4 AJ5 AJ31 AJ32
Signal Name RxD[0]N RxD[0]P ECLREFLO ECLREFHI GPIO[3] RxDATA[B][5] RxDATA[B][6] RxDATA[B][7] RxDATA[B][8] RxDATA[B][9] GNDD GPIO[2] GPIO[1] GPIO[0] TxTOHF RxDATA[B][1] RxDATA[B][2] RxDATA[B][3] RxDATA[B][4] GNDD GNDD TxTOHCK TxTOHD[A] TxTOHD[B] TxTOHD[C] RxEOP[B] RxSOP/C[B]
AC31 TxDATA[B][8] AC32 TxDATA[B][9] AC33 TxDATA[B][10] AC34 AC35 AD1 AD2 AD3 AD4 AD5 AD31 AD32 AD33 AD34 AD35 AE1 AE2 AE3 AE4 AE5 AE31 AE32 AE33 AE34 AE35 AF1 AF2 AF3 AF4 AF5 AF31 AF32 AF33 AF34 AF35 TxDATA[B][11] GNDD RxD[5]N RxD[5]P RxD[6]N RxD[6]P VDDD TxDATA[B][3] TxDATA[B][4] TxDATA[B][5] TxDATA[B][6] TxDATA[B][7] RxD[3]N RxD[3]P RxD[4]N RxD[4]P VDDD VDDD RxDATA[B][15] TxDATA[B][0] TxDATA[B][1] TxDATA[B][2] RxD[1]N RxD[1]P RxD[2]N RxD[2]P VDDD
RxDATA[B][10] RxDATA[B][11] RxDATA[B][12] RxDATA[B][13] RxDATA[B][14]
GNDD TxEOP[B] TxSOP/C[B] TxENB[B] TxPA[B] TxERR[B]
RxD[9]N/RxCLK[D]N RxD[9]P/RxCLK[D]P RxD[10]N/RxD[D]N RxD[10]P/RxD[D]P
GNDD RxERR[A] RxPA[A] NC VDDD VDDD RxD[14]N/ RxCLK[A]N RxD[14]P/ RxCLK[A]P RxD[15]N/ RxD[B]N RxD[15]P/ RxD[B]P RxADDR[0] RxADDR[1] RxCLK[A] TxADDR[2] RxSZ[A]
VDDD TxDATA[B][13] TxDATA[B][12]
AB33 TxDATA[B][14] AB34 TxDATA[B][15] AB35 TxPRTY[B] AC1 AC2 AC3 AC4 AC5 GNDD RxD[7]N RxD[7]P RxD[8]N RxD[8]P
AJ33 RxPRTY[B] AJ34 RxDATA[B][0] AJ35 GNDD AK1 AK2 AK3 AK4 AK5 VDDD TxTOHD[D] RxREF RxTOHF[A] RxTOHCK[A]
Note: NC refers to no connect. Do not connect pins so designated.
14
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued) Pin AK31 AK32 AK33 AK34 AK35 AL1 AL2 AL3 AL4 AL5 AL6 AL7 AL8 AL9 AL10 AL11 AL12 AL13 AL14 AL15 AL16 AL17 AL18 AL19 AL20 AL21 AL22 AL23 AL24 AL25 AL26 AL27 AL28 AL29 AL30 Signal Name RxSZ[B] RxERR[B] RxPA[B] RxENB[B] VDDD VDDD RxTOHD[A] RxTOHF[B] RxTOHCK[B] VDDD RxTOHCK[C] RxTOHCK[D] NC RxPA[D] RxDATA[D][0] VDDD RxDATA[D][9] RxDATA[D][14] TxDATA[D][3] TxDATA[D][8] VDDD TxSOP/C[D] VDDD NC VDDD RxSOP/C[C] RxDATA[C][3] RxDATA[C][7] RxDATA[C][12] VDDD TxDATA[C][5] TxDATA[C][10] TxDATA[C][14] TxEOP[C] TxSZ[C] Pin AL31 AL32 AL33 AL34 AL35 AM1 AM2 AM3 AM4 AM5 AM6 AM7 AM8 AM9 AM10 AM11 AM12 AM13 AM14 AM15 AM16 AM17 AM18 AM19 AM20 AM21 AM22 AM23 AM24 AM25 AM26 AM27 AM28 AM29 AM30 Signal Name VDDD RxADDR[3] RxADDR[2] RxCLK[B] VDDD GNDD GNDD GNDD VDDD RxTOHD[B] RxTOHD[C] NC RxCLK[D] RxENB[D] RxDATA[D][1] RxDATA[D][5] RxDATA[D][10] RxDATA[D][15] TxDATA[D][2] TxDATA[D][7] TxDATA[D][12] TxPRTY[D] TxERR[D] NC RxSZ[C] RxEOP[C] RxDATA[C][2] RxDATA[C][6] RxDATA[C][11] TxDATA[C][0] TxDATA[C][4] TxDATA[C][9] TxDATA[C][13] TxSOP/C[C] TxERR[C] Pin AM31 AM32 AM33 AM34 AM35 AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8 AN9 AN10 AN11 AN12 AN13 AN14 AN15 AN16 AN17 AN18 AN19 AN20 AN21 AN22 AN23 AN24 AN25 AN26 AN27 AN28 AN29 AN30 Signal Name TxADDR[4] VDDD GNDD GNDD GNDD GNDD GNDD VDDD GNDD RxTOHF[C] GNDD RxTOHD[D] RxSZ[D] RxEOP[D] RxDATA[D][2] RxDATA[D][6] RxDATA[D][11] TxDATA[D][0] TxDATA[D][4] TxDATA[D][9] TxDATA[D][13] TxEOP[D] TxSZ[D] NC RxCLK[C] RxENB[C] RxDATA[C][1] RxDATA[C][5] RxDATA[C][10] RxDATA[C][15] TxDATA[C][3] TxDATA[C][8] TxDATA[C][12] TxPRTY[C] TxPA[C] Pin AN31 AN32 AN33 AN34 AN35 AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 AP11 AP12 AP13 AP14 AP15 AP16 AP17 AP18 AP19 AP20 AP21 AP22 AP23 AP24 AP25 AP26 AP27 AP28 AP29 AP30 Signal Name NC GNDD VDDD GNDD GNDD VDDD VDDD GNDD GNDD NC RxTOHF[D] NC RxERR[D] RxSOP/C[D] RxDATA[D][3] RxDATA[D][7] RxDATA[D][12] TxDATA[D][1] TxDATA[D][5] TxDATA[D][10] TxDATA[D][14] TxDATA[D][15] TxPA[D] TxCLK[D] RxADDR[4] RxPA[C] RxDATA[C][0] RxDATA[C][4] RxDATA[C][9] RxDATA[C][14] TxDATA[C][2] TxDATA[C][7] TxDATA[C][11] TxDATA[C][15] TxENB[C]
Note: NC refers to no connect. Do not connect pins so designated.
Agere Systems Inc.
15
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued) Pin AP31 AP32 AP33 AP34 AP35 AR1 AR2 AR3 AR4 AR5 Signal Name TxCLK[C] GNDD GNDD VDDD VDDD VDDD VDDD GNDD GNDD VDDD Pin AR6 AR7 AR8 AR9 AR10 AR11 AR12 AR13 AR14 AR15 Signal Name VDDD GNDD GNDD RxPRTY[D] RxDATA[D][4] RxDATA[D][8] RxDATA[D][13] GNDD TxDATA[D][6] TxDATA[D][11] Pin AR16 AR17 AR18 AR19 AR20 AR21 AR22 AR23 AR24 AR25 Signal Name GNDD TxENB[D] VDDD VDDD GNDD RxERR[C] RxPRTY[C] GNDD RxDATA[C][8] RxDATA[C][13] Pin AR26 AR27 AR28 AR29 AR30 AR31 AR32 AR33 AR34 AR35 Signal Name TxDATA[C][1] TxDATA[C][6] GNDD GNDD VDDD VDDD GNDD GNDD VDDD VDDD
Note: NC refers to no connect. Do not connect pins so designated.
16
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name Signal Name ADDR[0] ADDR[1] ADDR[2] ADDR[3] ADDR[4] ADDR[5] ADDR[6] ADDR[7] ADDR[8] ADDR[9] ADDR[10] ADDR[11] ADDR[12] ADDR[13] ADDR[14] ADDR[15] ADS CLKDIV CS DATA[0] DATA[1] DATA[2] DATA[3] DATA[4] DATA[5] DATA[6] DATA[7] DATA[8] DATA[9] DATA[10] DATA[11] DATA[12] DATA[13] DATA[14] DATA[15] Pin E13 D13 C13 B13 E14 D14 C14 B14 A14 E15 C15 B15 A15 D16 C16 B16 E9 H4 B8 B9 A9 E10 D10 C10 B10 A10 D11 C11 B11 A11 E12 D12 C12 B12 A12 Signal Name DS DT ECLREFHI ECLREFLO GNDA GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD Pin C9 E8 AG4 AG3 C6 A3 A4 A7 A8 A13 A16 A20 A23 A27 A28 A29 A32 A33 B3 B4 B32 B33 C1 C2 C4 C32 C34 C35 D1 D2 D3 D33 D34 D35 F3 Signal Name GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD Pin G1 G35 H1 H3 H5 H35 N1 N35 T1 T35 V3 V31 Y1 Y4 Y35 AA5 AC1 AC35 AH1 AH35 AJ1 AJ35 AM1 AM2 AM3 AM33 AM34 AM35 AN1 AN2 AN4 AN6 AN32 AN34 AN35 Signal Name GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD PLL GPIO[0] GPIO[1] GPIO[2] GPIO[3] ICT INT MPCLK MPMODE NC NC NC NC NC NC NC NC NC NC Pin AP3 AP32 AP33 AP4 AR3 AR4 AR7 AR8 AR13 AR16 AR20 AR23 AR28 AR29 AR32 AR33 E4 AH4 AH3 AH2 AG5 E7 B7 C8 D8 A19 A21 A22 A24 A25 A26 B5 B17 B18 B19
Note: NC refers to no connect. Do not connect pins so designated.
Agere Systems Inc.
17
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued)
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC
B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 C5 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 D5 D6 D15 D17 D18 D19 D20
NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC
D21 D22 D23 D24 D25 D26 D28 D29 D30 D31 E2 E6 E17 E18 E19 E21 E22 E23 E24 E26 E27 E28 E29 E30 E32 E33 E34 F5 F31 F32 F33 F34 G4 G31 U33
NC NC NC NC NC NC NC NC NC PMRST R/W RST RxADDR[0] RxADDR[1] RxADDR[2] RxADDR[3] RxADDR[4]
RxCKN/RxD[A]N RxCKP/RxD[A]P
V34 AL8 AL19 AM7 AM19 AN19 AN31 AP5 AP7 D7 D9 C7 W31 W32 AL33 AL32 AP20 V4 V5 W33 AL34 AN20 AM8 AG1 AG2 AF1 AF2 AF3 AF4 AE1 AE2 AE3 AE4 AD1 AD2
RxD[6]N RxD[6]P RxD[7]N RxD[7]P RxD[8]N RxD[8]P
RxD[9]N/RxCLK[D]N RxD[9]P/RxCLK[D]P RxD[10]N/RxD[D]N RxD[10]P/RxD[D]P RxD[11]N/RxCLK[C]N RxD[11]P/RxCLK[C]P RxD[12]N/RxD[C]N RxD[12]P/RxD[C]P
AD3 AD4 AC2 AC3 AC4 AC5 AB1 AB2 AB3 AB4 AA1 AA2 AA3 AA4 Y2 Y3 W2 W3 W4 W5 T33 T32 R35 R34 R33 R32 R31 P35 P34 P33 P32 P31 N34 N33 N32
RxD[13]N/RxCLK[B]N RxD[13]P/RxCLK[B]P
RxD[14]N/RxCLK[A]N RxD[14]P/RxCLK[A]P
RxD[15]N/RxD[B]N RxD[15]P/RxD[B]P RxDATA[A][0] RxDATA[A][1] RxDATA[A][2] RxDATA[A][3] RxDATA[A][4] RxDATA[A][5] RxDATA[A][6] RxDATA[A][7] RxDATA[A][8] RxDATA[A][9] RxDATA[A][10] RxDATA[A][11] RxDATA[A][12] RxDATA[A][13] RxDATA[A][14]
RxCLK[A] RxCLK[B] RxCLK[C] RxCLK[D] RxD[0]N RxD[0]P RxD[1]N RxD[1]P RxD[2]N RxD[2]P RxD[3]N RxD[3]P RxD[4]N RxD[4]P RxD[5]N RxD[5]P
Note: NC refers to no connect. Do not connect pins so designated.
18
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued) Signal Name RxDATA[A][15] RxDATA[B][0] RxDATA[B][1] RxDATA[B][2] RxDATA[B][3] RxDATA[B][4] RxDATA[B][5] RxDATA[B][6] RxDATA[B][7] RxDATA[B][8] RxDATA[B][9] RxDATA[B][10]
RxDATA[B][11] RxDATA[B][12] RxDATA[B][13] RxDATA[B][14]
Pin N31 AJ34 AH31 AH32 AH33 AH34 AG31 AG32 AG33 AG34 AG35 AF31 AF32 AF33 AF34 AF35 AE32 AP22 AN22 AM22 AL22 AP23 AN23 AM23 AL23 AR24 AP24 AN24 AM24 AL24 AR25 AP25 AN25 AL10 AM10
Signal Name RxDATA[D][2] RxDATA[D][3] RxDATA[D][4] RxDATA[D][5] RxDATA[D][6] RxDATA[D][7] RxDATA[D][8] RxDATA[D][9] RxDATA[D][10] RxDATA[D][11] RxDATA[D][12] RxDATA[D][13] RxDATA[D][14] RxDATA[D][15] RxENB[A] RxENB[B] RxENB[C] RxENB[D] RxEOP[A] RxEOP[B] RxEOP[C] RxEOP[D] RxERR[A] RxERR[B] RxERR[C] RxERR[D] RxPA[A] RxPA[B] RxPA[C] RxPA[D] RxPRTY[A] RxPRTY[B] RxPRTY[C] RxPRTY[D] RxREF
Pin AN10 AP10 AR10 AM11 AN11 AP11 AR11 AL12 AM12 AN12 AP12 AR12 AL13 AM13 U34 AK34 AN21 AM9 U32 AJ31 AM21 AN9 V32 AK32 AR21 AP8 V33 AK33 AP21 AL9 T34 AJ33 AR22 AR9 AK3
Signal Name RxSOP/C[A] RxSOP/C[B] RxSOP/C[C] RxSOP/C[D] RxSZ[A] RxSZ[B] RxSZ[C] RxSZ[D] RxTOHCK[A] RxTOHCK[B] RxTOHCK[C] RxTOHCK[D] RxTOHD[A] RxTOHD[B] RxTOHD[C] RxTOHD[D] RxTOHF[A] RxTOHF[B] RxTOHF[C] RxTOHF[D] TCK TDI TDO TMS TRST TxADDR[0] TxADDR[1] TxADDR[2] TxADDR[3] TxADDR[4] TxCKN TxCKP TxCKQN TxCKQP TxCLK[A]
Pin U31 AJ32 AL21 AP9 W35 AK31 AM20 AN8 AK5 AL4 AL6 AL7 AL2 AM5 AM6 AN7 AK4 AL3 AN5 AP6 F2 G5 G2 F4 G3 G32 G33 W34 Y34 AM31 U5 U4 J5 H2 G34
Signal Name TxCLK[B] TxCLK[C] TxCLK[D] TxD[0]N/TxD[D]N TxD[0]P/TxD[D]P TxD[1]N/TxD[C]N TxD[1]P/TxD[C]P TxD[2]N/TxD[B]N TxD[2]P/TxD[B]P TxD[3]N/TxD[A]N TxD[3]P/TxD[A]P TxD[4]N TxD[4]P TxD[5]N TxD[5]P TxD[6]N TxD[6]P TxD[7]N TxD[7]P TxD[8]N TxD[8]P TxD[9]N TxD[9]P TxD[10]N TxD[10]P TxD[11]N TxD[11]P TxD[12]N TxD[12]P TxD[13]N TxD[13]P TxD[14]N TxD[14]P TxD[15]N TxD[15]P
Pin Y33 AP31 AP19 U2 T2 T3 T4 R2 R3 R5 R4 P1 P2 P3 P5 N2 N3 N4 N5 M1 M2 M3 M4 L1 L2 L3 L4 K1 K2 K3 K4 J1 J2 J3 J4
RxDATA[B][15] RxDATA[C][0] RxDATA[C][1] RxDATA[C][2] RxDATA[C][3] RxDATA[C][4] RxDATA[C][5] RxDATA[C][6] RxDATA[C][7] RxDATA[C][8] RxDATA[C][9] RxDATA[C][10] RxDATA[C][11] RxDATA[C][12] RxDATA[C][13] RxDATA[C][14] RxDATA[C][15] RxDATA[D][0] RxDATA[D][1]
Note: NC refers to no connect. Do not connect pins so designated.
Agere Systems Inc.
19
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued) Signal Name TxDATA[A][0] TxDATA[A][1] TxDATA[A][2] TxDATA[A][3] TxDATA[A][4] TxDATA[A][5] TxDATA[A][6] TxDATA[A][7] TxDATA[A][8] TxDATA[A][9] TxDATA[A][10] TxDATA[A][11] TxDATA[A][12] TxDATA[A][13] TxDATA[A][14] TxDATA[A][15] TxDATA[B][0] TxDATA[B][1] TxDATA[B][2] TxDATA[B][3] TxDATA[B][4] TxDATA[B][5] TxDATA[B][6] TxDATA[B][7] TxDATA[B][8] TxDATA[B][9] TxDATA[B][10] TxDATA[B][11] TxDATA[B][12] TxDATA[B][13] TxDATA[B][14] TxDATA[B][15] TxDATA[C][0] TxDATA[C][1] TxDATA[C][2] Pin M35 M34 M33 M32 M31 L35 L34 L33 L32 K35 K34 K33 K32 K31 J35 J34 AE33 AE34 AE35 AD31 AD32 AD33 AD34 AD35 AC31 AC32 AC33 AC34 AB32 AB31 AB33 AB34 AM25 AR26 AP26 Signal Name TxDATA[C][3] TxDATA[C][4] TxDATA[C][5] TxDATA[C][6] TxDATA[C][7] TxDATA[C][8] TxDATA[C][9] TxDATA[C][10] TxDATA[C][11] TxDATA[C][12] TxDATA[C][13] TxDATA[C][14] TxDATA[C][15] TxDATA[D][0] TxDATA[D][1] TxDATA[D][2] TxDATA[D][3] TxDATA[D][4] TxDATA[D][5] TxDATA[D][6] TxDATA[D][7] TxDATA[D][8] TxDATA[D][9] TxDATA[D][10] TxDATA[D][11] TxDATA[D][12] TxDATA[D][13] TxDATA[D][14] TxDATA[D][15] TxENB[A] TxENB[B] TxENB[C] TxENB[D] TxEOP[A] TxEOP[B] Pin AN26 AM26 AL26 AR27 AP27 AN27 AM27 AL27 AP28 AN28 AM28 AL28 AP29 AN13 AP13 AM14 AL14 AN14 AP14 AR14 AM15 AL15 AN15 AP15 AR15 AM16 AN16 AP16 AP17 H34 AA33 AP30 AR17 J31 AA31 Signal Name TxEOP[C] TxEOP[D] TxERR[A] TxERR[B] TxERR[C] TxERR[D] TxFSYNCN TxFSYNCP TxPA[A] TxPA[B] TxPA[C] TxPA[D] TxPRTY[A] TxPRTY[B] TxPRTY[C] TxPRTY[D] TxSOP/C[A] TxSOP/C[B] TxSOP/C[C] TxSOP/C[D] TxSZ[A] TxSZ[B] TxSZ[C] TxSZ[D] TxTOHCK TxTOHD[A] TxTOHD[B] TxTOHD[C] TxTOHD[D] TxTOHF VDDA VDDD VDDD VDDD VDDD Pin AL29 AN17 H32 AA35 AM30 AM18 U1 U3 H33 AA34 AN30 AP18 J33 AB35 AN29 AM17 J32 AA32 AM29 AL17 H31 Y32 AL30 AN18 AJ2 AJ3 AJ4 AJ5 AK2 AH5 B6 A1 A2 A5 A6 Signal Name VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD Pin A17 A18 A30 A31 A34 A35 B1 B2 B34 B35 C3 C33 D4 D27 D32 E1 E5 E11 E16 E20 E25 E31 E35 F1 F35 K5 L5 L31 M5 P4 R1 T5 T31 U35 V1
Note: NC refers to no connect. Do not connect pins so designated.
20
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued) Signal Name VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD Pin V2 V35 W1 Y5 Y31 AB5 AD5 AE5 AE31 AF5 Signal Name VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD Pin AK1 AK35 AL1 AL5 AL11 AL16 AL18 AL20 AL25 AL31 Signal Name VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD Pin AL35 AM4 AM32 AN3 AN33 AP1 AP2 AP34 AP35 AR1 Signal Name VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD VDDD PLL Pin AR2 AR5 AR6 AR18 AR19 AR30 AR31 AR34 AR35 E3
Note: NC refers to no connect. Do not connect pins so designated.
Agere Systems Inc.
21
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Note: 3.3 V CMOS logic inputs are 5 V tolerant. Logic inputs can be driven from standard TTL levels, and logic outputs can drive standard TTL inputs. All LVPECL buffers are differential. LVPECL is compliant with low-voltage (3.3 V) pseudo-emitter-coupled logic interface levels. All PECL outputs, including ECLREFHI and ECLREFLO require terminating resistors. The required termination for the PECL buffers is 50 to a terminating voltage of VDDD - 2 V. The Thevenin equivalent is also acceptable (130 to VDDD and 82 to GNDD). Other termination styles are not recommended. LVPECL inputs with a / in the name indicate multiple functionality. The name preceding the / is the function in STS-48/STM-16 mode. The name after the / is the function in STS-3/STM-1 or STS-12/STM-4 mode. Table 3. Pin Descriptions--Line Interface Signals Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be considered to be NC (no connect). Pin V5 V4 Symbol RxCKP/ RxD[A]P RxCKN/ RxD[A]N Type LVPECL I/O I Name/Description Receive Line Clock (STS-48/STM-16)/Receive Line Data Input Channel A. In STS-48/STM-16 mode, these pins function as receive line clock. This 155.52 MHz clock comes from an external clock data recovery circuit. This clock is used to clock in the RxD[15:0] receive line data inputs. In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive data input channel A at 155.52 Mbits/s or 622.08 Mbits/s, respectively. This buffer is internally disabled when not in STS-48/STM-16 mode and channel A is disabled. This buffer is internally disabled through proper provisioning when the input is not active. Receive Line Data Inputs (STS-48/STM-16). In STS-48/STM-16 mode, these pins function as receive line data inputs [0:8]. The remaining receive line data inputs [9:15] are listed below and are multiplexed for use in the STS-3/STM-1 or STS-12/STM-4 modes. The 2.488 Gbits/s STS-48/STM-16 serial data stream is converted to a 155.52 Mbits/s parallel 16-bit word external to TDAT042G5 by a demultiplexer. All 32 differential data input pins, RxD[15:0]P/N, are used as the parallel data input bus in the STS-48/STM-16 mode. These pins constitute a 155.52 Mbits/s parallel 16-bit word-aligned to the RxCKP/N 155.52 MHz receive line clock. RxD[15] is the most significant bit and is the first bit received. RxD[0] is the least significant bit and is the last bit received. This buffer is internally disabled through proper provisioning when the input is not active.
AG2 AG1 AF2 AF1 AF4 AF3 AE2 AE1 AE4 AE3 AD2 AD1 AD4 AD3 AC3 AC2 AC5 AC4 AB2
RxD[0]P RxD[0]N RxD[1]P RxD[1]N RxD[2]P RxD[2]N RxD[3]P RxD[3]N RxD[4]P RxD[4]N RxD[5]P RxD[5]N RxD[6]P RxD[6]N RxD[7]P RxD[7]N RxD[8]P RxD[8]N RxD[9]P/ RxCLK[D]P AB1 RxD[9]N/ RxCLK[D]N
LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL
I
I
Receive Line Data Input [9]/Receive Line Clock Channel D. In STS-48/ STM-16 mode, these pins function as receive line data input [9] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive line clock channel D at either 155.52 MHz (STS-3/STM-1) or 622.08 MHz (STS-12/STM-4). This buffer is internally disabled when not in STS-48/STM-16 mode and channel D is disabled. This buffer is internally disabled through proper provisioning when the input is not active.
22
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 3. Pin Descriptions--Line Interface Signals (continued) Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be considered to be NC (no connect). Pin AB4 AB3 Symbol RxD[10]P/ RxD[D]P RxD[10]N/ RxD[D]N Type LVPECL I/O I Name/Description Receive Line Data Input [10]/Receive Line Data Input Channel D. In STS-48/STM-16 mode, these pins function as receive line data input [10] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive line data input channel D at either 155.52 Mbits/s (STS-3/ STM-1) or 622.08 Mbits/s (STS-12/STM-4). This buffer is internally disabled when not in STS-48/STM-16 mode and channel D is disabled. This buffer is internally disabled through proper provisioning when the input is not active. Receive Line Data Input [11]/Receive Line Clock Channel C. In STS-48/STM-16 mode, these pins function as receive line data input [11] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive line clock channel C at either 155.52 MHz (STS-3/STM-1) or 622.08 MHz (STS-12/STM-4). This buffer is internally disabled when not in STS-48/STM-16 mode and channel C is disabled. This buffer is internally disabled through proper provisioning when the input is not active. Receive Line Data Input [12]/Receive Line Data Input Channel C. In STS-48/STM-16 mode, these pins function as receive line data input [12] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive line data input channel C at either 155.52 Mbits/s (STS-3/ STM-1) or 622.08 Mbits/s (STS-12/STM-4). This buffer is internally disabled when not in STS-48/STM-16 mode and channel C is disabled. This buffer is internally disabled through proper provisioning when the input is not active. Receive Line Data Input [13]/Receive Line Clock Channel B. In STS-48/STM-16 mode, these pins function as receive line data input [13] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive line clock channel B at either 155.52 MHz (STS-3/STM-1) or 622.08 MHz (STS-12/STM-4). This buffer is internally disabled when not in STS-48/STM-16 mode and channel B is disabled. This buffer is internally disabled through proper provisioning when the input is not active. Receive Line Data Input [14]/Receive Line Clock Channel A. In STS-48/STM-16 mode, these pins function as receive line data input [14] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive line clock channel A at either 155.52 MHz (STS-3/STM-1) or 622.08 MHz (STS-12/STM-4). This buffer is internally disabled when not in STS-48/STM-16 mode and channel A is disabled. This buffer is internally disabled through proper provisioning when the input is not active. Agere Systems Inc. 23
AA2 AA1
RxD[11]P/ RxCLK[C]P RxD[11]N/ RxCLK[C]N
LVPECL
I
AA4 AA3
RxD[12]P/ RxD[C]P RxD[12]N/ RxD[C]N
LVPECL
I
Y3 Y2
RxD[13]P/ RxCLK[B]P RxD[13]N/ RxCLK[B]N
LVPECL
I
W3 W2
RxD[14]P/ RxCLK[A]P RxD[14]N/ RxCLK[A]N
LVPECL
I
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 3. Pin Descriptions--Line Interface Signals (continued) Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be considered to be NC (no connect). Pin W5 W4 Symbol RxD[15]P/ RxD[B]P RxD[15]N/ RxD[B]N Type LVPECL I/O* I Name/Description Receive Line Data Input [15]/Receive Line Data Input Channel B. In STS-48/STM-16 mode, these pins function as receive line data input [15] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive line data input channel B at either 155.52 Mbits/s (STS-3/STM-1) or 622.08 Mbits/s (STS-12/STM-4). This buffer is internally disabled when not in STS-48/STM-16 mode and channel B is disabled. This buffer is internally disabled through proper provisioning when the input is not active. H4 CLKDIV 3.3 V (5 V tolerant) Iu Clock Division. This pin controls a divider in the line transmit block to create a 77.76 MHz clock from either the 155.52 MHz STS-3/STM-1 or STS-48/STM-16 transmit line clock, or the 622.08 MHz STS-12/STM-4 transmit line clock, TxCKP/N. CLKDIV = 1 for STS-12/STM-4 (divide by 8). CLKDIV = 0 for STS-3/STM-1 and STS-48 /STM-16 (divide by 2). AG3 AG4 ECLREFLO ECLREFHI -- -- O O Reference Voltage for LVPECL I/O Buffers. ECLREFLO and ECLREFHI are buffer outputs which provide the reference for the output level of theLVPECL output buffers. ECLREFLO and ECLREFHI must be connected to a 50 source of VDDD - 2 V. No user-accessible signal is present on these pins.
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance. This may be obtained from a passive voltage divider of a 130 resistor connected from VDDD to one end of an 82 resistor, the other end of which is connected to GNDD.
Note: The TDAT042G5 has internal circuitry that is associated with the buffer section of the chip. This section monitors the voltage levels of REFLO and REFHI. A very low frequency calibration process, during which the values at the ECLREFLO and ECLREFHI pins are continuously monitored, is performed to allow the drive capactity of remaining buffers to be adjusted within true PECL levels. Therefore, it is important to terminate the ECLREFLO and ECLREFHI outputs in exactly the same way as you would terminate LVPECL outputs.
24
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 3. Pin Descriptions--Line Interface Signals (continued) Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be considered to be NC (no connect). Pin U4 U5 Symbol TxCKP TxCKN Type LVPECL I/O* I Name/Description Transmit Line Clock. When in STS-48/STM-16 mode, this clock is a 155.52 MHz input and clocks out TxD[15:0]P/N or TxD[D:A]. When in STS-12/STM-4 mode, this clock is a 622.08 MHz input and clocks out TxD[D:A]P/N. When in STS-3/STM-1 mode, this clock is a 155.52 MHz input and clocks out TxD[D:A]P/N. Transmit Line Frame Sync. This input is the external 8 kHz transmit line frame sync. Driving this input is optional. If undriven from an external source, these pins must be no connects. When this input is used, it must be (1) synchronized to TxCKP/N, and (2) at least one TxCKP/N cycle wide, up to a maximum of 1 frame period minus 2 TxCKP/N cycles wide. Transmit Line Data Output [0]/Transmit Line Data Output Channel D. In STS-48/STM-16 mode, the pins function as transmit line data output [0] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, the pins function as transmit data output channel D at either 155.52 Mbits/s or 622.08 Mbits/s. This buffer is internally disabled through proper provisioning when the input is not active. Transmit Line Data Output [1]/Transmit Line Data Output Channel C. In STS-48/STM-16 mode, the pins function as transmit line data output [1] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, the pins function as transmit data output channel C at either 155.52 Mbits/s or 622.08 Mbits/s. This buffer is internally disabled through proper provisioning when the input is not active. Transmit Line Data Output [2]/Transmit Line Data Output Channel B. In STS-48/STM-16 mode, the pins function as transmit line data output [2] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, the pins function as transmit data output channel B at either 155.52 Mbits/s or 622.08 Mbits/s. This buffer is internally disabled through proper provisioning when the input is not active. Transmit Line Data Output [3]/Transmit Line Data Output Channel A. In STS-48/STM-16 mode, the pins function as transmit line data output [3] at 155.52 Mbits/s. In STS-3/STM-1 or STS-12/STM-4 mode, the pins function as transmit data output channel A at either 155.52 Mbits/s or 622.08 Mbits/s. This buffer is internally disabled through proper provisioning when the input is not active.
U3 U1
TxFSYNCP TxFSYNCN
LVPECL
Id Iu
T2 U2
TxD[0]P/ TxD[D]P TxD[0]N/ TxD[D]N
LVPECL
O
T4 T3
TxD[1]P/ TxD[C]P TxD[1]N/ TxD[C]N
LVPECL
O
R3 R2
TxD[2]P/ TxD[B]P TxD[2]N/ TxD[B]N
LVPECL
O
R4 R5
TxD[3]P/ TxD[A]P TxD[3]N/ TxD[A]N
LVPECL
O
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
Agere Systems Inc.
25
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 3. Pin Descriptions--Line Interface Signals (continued) Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be considered to be NC (no connect). Pin H2 J5 Symbol TxCKQP TxCKQN Type LVPECL I/O O Name/Description Transmit Line Clock Q. This 155.52 MHz clock is used to clock out the data in the STS-48/STM-16 mode for forward-directional timing with the 155 Mbits/s 16-bit parallel-to-2.5 Gbits/s serial MUX. For an STS-48/STM-16 contra-clocking interface with the 155 Mbits/s parallel-to-2.5 Gbits/s serial MUX, this clock is not used. In the contra-clocking mode, a phase-locked version of TxCKP/N is used to clock out the data. In the contra-clocking mode, the transmit line clock PLL must be active (see core register map 0x0010, bit 5 (PLL_ MODE) on page 112). This clock is not used in the STS-3/STM-1 or STS-12/STM-4 modes. Transmit Line Data Outputs (STS-48/STM-16). In STS-48/ STM-16 mode, these pins function as transmit line data outputs [4:15]. The remaining transmit line data outputs [0:3] are listed below and are multiplexed for use in the STS-3/STM-1 or STS-12/ STM-4 modes. The 155.52 Mbits/s 16-bit word parallel bus is converted to a 2.488 Gbits/s serial data stream external to TDAT042G5 by a multiplexer. All 32 differential data output pins, TxD[15:0]P/N, are used as the parallel data output bus in the STS-48/STM-16 mode. These pins constitute a 155.52 Mbyte/s parallel 16-bit word-aligned to the TxCKP/N and TxCKQP/N 155.52 MHz transmit line clock. TxD[15] is the most significant bit and is the first bit transmitted. TxD[0] is the least significant bit and is the last bit transmitted. This buffer is internally disabled through proper provisioning when the input is not active.
P2 P1 P5 P3 N3 N2 N5 N4 M2 M1 M4 M3 L2 L1 L4 L3 K2 K1 K4 K3 J2 J1 J4 J3
TxD[4]P TxD[4]N TxD[5]P TxD[5]N TxD[6]P TxD[6]N TxD[7]P TxD[7]N TxD[8]P TxD[8]N TxD[9]P TxD[9]N TxD[10]P TxD[10]N TxD[11]P TxD[11]N TxD[12]P TxD[12]N TxD[13]P TxD[13]N TxD[14]P TxD[14]N TxD[15]P TxD[15]N
LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL LVPECL
O
26
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 4. Pin Descriptions--TOH Interface Signals Pin AK3 Symbol RxREF Type 3.3 V I/O* O Name/Description Receive Line Frame. This output provides the receive 8 kHz frame reference for external timing needs. RxREF is derived from one of the received line clocks (user-selectable). It is a 50% duty cycle clock when TDAT042G5 is in frame. This signal may be used to implement line timing on a SONET ring. When not provisioned, this signal must not be used. RxREF is valid only when the SONET framer is in frame. Upon LOC or LOF, RxREF is present but is free running. Because jitter may be present on this signal when the device goes into and out of an LOC or LOF state, it should not be used as a reference for TxFSYNCP/N. Receive TOH Interface Clock. This clock is nominally a 5.184 MHz (STS-3/STM-1) or 20.736 MHz (STS-12/STM-4, STS-48/STM-16) clock which provides timing for circuitry that receives and externally processes the receive transport overhead bytes. The duty cycle of the clock is not 50% (see Figure 49 and Figure 50, page 272). In STS-48/STM-16 mode, all four of these clocks are active. Receive TOH Interface Data. This 5.184 Mbits/s or 20.736 Mbits/s signal contains all the receive transport overhead bytes (A1, A2, J0/Z0, B1, E1, F1, D1--D3, H1--H3, K1, K2, D4--D12, S1/Z1, M0, and E2) for all 3/12/48 STS-1s. This signal can be used by external circuitry to process the TOH bytes. RxTOHD is updated on the falling edge of RxTOHCK. In STS-48/ STM-16 mode, RxTOHD[A] contains all currently defined TOH bits except for M1, which is located in RxTOHD[C]. Receive TOH Interface Frame. This 8 kHz framing signal is used to locate the individual receive transport overhead bits in the RxTOHD bit stream. RxTOHF is only high while bit 1 (MSB) of the first framing byte (A1 during parity time in first byte) is present on the RxTOHD output. RxTOHF is updated on the falling edge of RxTOHCK. Transmit TOH Interface Clock. This clock is nominally a 5.184 MHz (STS-3/STM-1), 20.736 MHz (STS-12/STM-4, STS-48/STM-16) clock which provides timing for circuitry that externally generates and transmits the transmit transport overhead bytes for inclusion in the transmit data stream. The duty cycle of the clock is not 50% (see Figure 48, pag e271). Transmit TOH Interface Data. This 5.184 Mbits/s or 20.736 Mbits/s signal contains all the transmit transport overhead bytes (A1, A2, J0/Z0, B1, E1, F1, D1--D3, H1--H3, K1, K2, D4--D12, S1/Z1, M0, and E2) for all 3/12/48 STS-1s. This signal is generated by external circuitry for custom TOH byte definitions. TxTOHD is sampled on the rising edge of TxTOHCK. Transmit TOH Interface Frame. This 8 kHz framing signal is used to align the individual transmit transport overhead bits in the TxTOHD bit stream. TxTOHF is only high while bit 1 (MSB) of the first framing byte (A1 during parity time in first byte) is expected on the TxTOHD input. TxTOHF is updated on the falling edge of TxTOHCK.
AL7 AL6 AL4 AK5
RxTOHCK[D] RxTOHCK[C] RxTOHCK[B] RxTOHCK[A]
3.3 V
O
AN7 AM6 AM5 AL2
RxTOHD[D] RxTOHD[C] RxTOHD[B] RxTOHD[A]
3.3 V
O
AP6 AN5 AL3 AK4
RxTOHF[D] RxTOHF[C] RxTOHF[B] RxTOHF[A]
3.3 V
O
AJ2
TxTOHCK
3.3 V
O
AK2 AJ5 AJ4 AJ3
TxTOHD[D] TxTOHD[C] TxTOHD[B] TxTOHD[A]
3.3 V (5 V tolerant)
Iu
AH5
TxTOHF
3.3 V
O
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
Agere Systems Inc.
27
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Note: An external pull-up resistor of 50 k--100 k is required on all input pins of a disabled UTOPIA port. Either an external pull-up resistor of 50 k--100 k or an external pull-down resistor of 0 --1 k is required on all unused inputs of an enabled UTOPIA port. Use of either a pull-up or pull-down resistor is selected to place the unused input pin into the inactive state. Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals Pin AM31 Y34 W34 G33 G32 J34 J35 K31 K32 K33 K34 K35 L32 L33 L34 L35 M31 M32 M33 M34 M35 AB34 AB33 AB31 AB32 AC34 AC33 AC32 AC31 AD35 AD34 AD33 AD32 AD31 AE35 AE34 AE33 Symbol TxADDR[4] TxADDR[3] TxADDR[2] TxADDR[1] TxADDR[0] TxDATA[A][15] TxDATA[A][14] TxDATA[A][13] TxDATA[A][12] TxDATA[A][11] TxDATA[A][10] TxDATA[A][9] TxDATA[A][8] TxDATA[A][7] TxDATA[A][6] TxDATA[A][5] TxDATA[A][4] TxDATA[A][3] TxDATA[A][2] TxDATA[A][1] TxDATA[A][0] TxDATA[B][15] TxDATA[B][14] TxDATA[B][13] TxDATA[B][12] TxDATA[B][11] TxDATA[B][10] TxDATA[B][9] TxDATA[B][8] TxDATA[B][7] TxDATA[B][6] TxDATA[B][5] TxDATA[B][4] TxDATA[B][3] TxDATA[B][2] TxDATA[B][1] TxDATA[B][0] Type 3.3 V (5 V tolerant) I/O I Name/Description Transmit Address. The TxADDR is driven by the UTOPIA master to poll and select the appropriate PHY channel of TDAT042G5 to transmit data. Note: The PHY address (0x00 to 0x1E) for each of the four channels in TDAT042G5 is configured via software provisioning. Transmit Data Channel A. Used to transport data into the UTOPIA PHY Tx block. TxDATA[A] is only valid when TxENB[A] is asserted, and is sampled on the rising edge of TxCLK[A]. Note that TxDATA[A] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits 15 to 8 are valid. In U3 or U3+ (32-bit mode), TxDATA[A][15:0] forms the most significant 16 bits of the combined data bus (bits 31 to 16), and TxDATA[B][15:0] forms the least significant 16 bits of the combined data bus (bits 15 to 0). Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
3.3 V (5 V tolerant)
I
3.3 V (5 V tolerant)
I
Transmit Data Channel B. Used to transport data into the UTOPIA PHY Tx block. TxDATA[B] is only valid when TxENB[B] is asserted (TxENB[A] for U3 or U3+ (32-bit mode)), and is sampled on the rising edge of TxCLK[B] (TxCLK[A] for U3 or U3+ (32-bit mode). Note that TxDATA[B] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits 15 to 8 are valid. In U3 or U3+ (32-bit mode), TxDATA[B][15:0] forms the least significant 16 bits of the combined data bus (bits 15 to 0), and TxDATA[A][15:0] forms the most significant 16 bits of the combined data bus (bits 31 to 16). In this mode, channel B port must be provisioned to the idle (default) state. Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
28
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AP29 AL28 AM28 AN28 AP28 AL27 AM27 AN27 AP27 AR27 AL26 AM26 AN26 AP26 AR26 AM25 AP17 AP16 AN16 AM16 AR15 AP15 AN15 AL15 AM15 AR14 AP14 AN14 AL14 AM14 AP13 AN13 AM17 AN29 AB35 J33 Symbol TxDATA[C][15] TxDATA[C][14] TxDATA[C][13] TxDATA[C][12] TxDATA[C][11] TxDATA[C][10] TxDATA[C][9] TxDATA[C][8] TxDATA[C][7] TxDATA[C][6] TxDATA[C][5] TxDATA[C][4] TxDATA[C][3] TxDATA[C][2] TxDATA[C][1] TxDATA[C][0] TxDATA[D][15] TxDATA[D][14] TxDATA[D][13] TxDATA[D][12] TxDATA[D][11] TxDATA[D][10] TxDATA[D][9] TxDATA[D][8] TxDATA[D][7] TxDATA[D][6] TxDATA[D][5] TxDATA[D][4] TxDATA[D][3] TxDATA[D][2] TxDATA[D][1] TxDATA[D][0] TxPRTY[D] TxPRTY[C] TxPRTY[B] TxPRTY[A] Type 3.3 V (5 V tolerant) I/O I Name/Description Transmit Data Channel C. Used to transport data into the UTOPIA PHY Tx block. TxDATA[C] is only valid when TxENB[C] is asserted, and is sampled on the rising edge of TxCLK[C]. Note that TxDATA[C] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits 15 to 8 are valid. In U3 or U3+ (32-bit mode), channel C port is considered disabled, and must be provisioned to the idle (default) state. Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
3.3 V (5 V tolerant)
I
Transmit Data Channel D. Used to transport data into the UTOPIA PHY Tx block. TxDATA[D] is only valid when TxENB[D] is asserted, and is sampled on the rising edge of TxCLK[D] (TxCLK[A] for U3+, 32-bit mode). Note that TxDATA[D] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits 15 to 8 are valid. In U3 or U3+ (32-bit mode), channel D port is considered disabled, and must be provisioned to the idle (default) state. Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
3.3 V (5 V tolerant)
I
Transmit Parity. This signal indicates the parity on the TxDATA[D:A][15:0] bus. A parity error raises an alarm but does not cause the cell/packet to be dropped. Odd or even parity may be provisioned through a software register. TxPRTY[D:A] is considered valid only when TxENB[D:A] is asserted, and is sampled on the rising edge of TxCLK[D:A]. In U3 or U3+ (32-bit mode), the TxPRTY[A] parity pin of port A indicates the parity for the entire 32-bit data input.
Agere Systems Inc.
29
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AL17 AM29 AA32 J32 Symbol TxSOP/C[D] TxSOP/C[C] TxSOP/C[B] TxSOP/C[A] Type 3.3 V (5 V tolerant) I/O I Name/Description Transmit Start of Packet/Cell. In ATM mode, the TxSOP/C[D:A] signal marks the start of a cell on the TxDATA[D:A][15:0] bus. When TxSOP/C[D:A] is active, the first word of the cell is present on the TxDATA[D:A][15:0] bus. In packet modes, the TxSOP/C[D:A] signal marks the start of a packet on the TxDATA[D:A][15:0] bus. When TxSOP/C[D:A] is active, the first word of the packet is present on the TxDATA[D:A][15:0] bus. TxSOP/C[D:A] is considered valid only when TxENB[D:A] is asserted, and is sampled on the rising edge of TxCLK[D:A]. In U3 or U3+ (32-bit mode), only the TxSOP/C[A] pin of port A is used to indicate a start of packet/cell for the 32-bit data input. Transmit Cell/Packet Available. This signal indicates when the TDAT042G5 transmit FIFO can accept data from the master device. If the FIFO is empty or more than the provisioned space is available in the FIFO, TxPA[D:A] is set active.
I
AP18 AN30 AA34 H33
TxPA[D] TxPA[C] TxPA[B] TxPA[A]
3.3 V
O
One-Cycle Delay Mode. This mode follows the UTOPIA Level 2 Standard. The TxPA response occurs one cycle after the address is polled. Two-Cycle Delay Mode. This mode follows the UTOPIA Level 3 baselined text*. The TxPA response occurs two cycles after the address is polled. TxPA[D:A] Assertion. The TxPA[D:A] signal behavior relies on the UTOPIA provisionable watermarks. In packet mode, TxPA[D:A] goes high when the amount of data in the FIFO is less than the high watermark setting. In ATM mode, TxPA[D:A] goes high when the FIFO has space to receive a complete ATM cell from the master. (This requires the high threshold to be set appropriately by the user, i.e., set so that an entire cell can be received once TxPA[D:A] goes active.)
I
I
* ATM Forum Technical Committee, UTOPIA Level 3, STR-PHY-UL3-01.00, July 1999.
(See further description on next page.)
30
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AP18 AN30 AA34 H33 Symbol TxPA[D] TxPA[C] TxPA[B] TxPA[A] Type 3.3 V I/O O Name/Description Transmit Cell/Packet Available. (continued)
I
TxPA[D:A] Deassertion. In packet mode, TxPA[D:A] goes low when the amount of data in the FIFO reaches or exceeds the high watermark. In ATM mode, TxPA[D:A] goes low when there is not enough space in the FIFO to receive an entireATM cell. (This requires the threshold values to be provisioned properly, i.e., set low enough such that when the high watermark is reached, the transmission of the current cell can be completed without overflowing the FIFO). In ATM mode, TxPA[D:A] will be deasserted four cycles before the end of the current cell transfer if the FIFO cannot accept a complete ATM cell on the following transmission. TxPA[D:A] is updated on the rising edge of TxCLK[D:A]. In 32-bit mode, only the TxPA[A] pin of port A is used to indicate the packet/cell available status.
I
AP19 AP31 Y33 G34
TxCLK[D] TxCLK[C] TxCLK[B] TxCLK[A]
3.3 V (5 V tolerant)
I
MPHY Support. When the TxPA signals are used for multi-PHY (MPHY) direct status, the corresponding TxCLK[B, C, and/or D] must be provided. This clock will be the same as TxCLK[A]. Transmit Clock. This clock is used to write cells or packets into the transmit FIFO. TxCLK[D:A] can operate at speeds from dc to 104 MHz. In U3 or U3+ (32-bit mode), only the TxCLK[A] input pin of port A is used to clock the data input. If MPHY direct status is used, then all clocks TxCLK[D:A] must be provided. Transmit Data Enable (Active-Low). This signal is used to transfer data on the TxDATA[D:A][15:0] bus into the transmit FIFOs. If TxENB[D:A] is high, no operation is performed. If TxENB[D:A] is low, a write occurs. TxENB[D:A] is sampled on the rising edge of TxCLK[D:A]. TxENB[D:A] has the same meaning as data valid. In U3 or U3+ (32-bit mode), only the TxENB[A] input pin of port A is used to enable the transfer of data.
AR17 AP30 AA33 H34
TxENB[D] TxENB[C] TxENB[B] TxENB[A]
3.3 V (5 V tolerant)
I
Agere Systems Inc.
31
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AN18 AL30 Y32 H31 Symbol TxSZ[D] TxSZ[C] TxSZ[B] TxSZ[A] Type 3.3 V (5 V tolerant) I/O I Name/Description Transmit Size. These pins are used only in U2+ and U3+ (packet) modes. This signal defines the valid bytes transmitted and their packing within (1) TxDATA[D:A][15:0] for U2+ 16-bit mode, and (2) TxDATA[A][15:0] and TxDATA[B][15:0] for the U3+ (32-bit mode). The meaning of these bits may be inverted through UT register 0x0226 TxSIZE/RxSIZE mode, page 164. In U3+ (8-bit mode), TxSZ[D:A] are unused. For U2+ 16-bit mode, TxSZ[D:A] = 0 defines the MSByte of TxDATA[D:A][15:0], i.e., TxDATA[D:A][15:8], to be the last byte of the packet transmitted when using the default configuration. TxSZ[D:A] = 1 defines the LSByte of TxDATA[D:A][15:0], i.e. TxDATA[D:A][7:0], to be the last byte of the packet transmitted when using the default configuration. For U3+ (32-bit mode), TxSZ[A] and TxSZ[B] are combined to define four states of the transmitted data stream. TxSZ[C] and TxSZ[D] are unused. The following states are assigned by TxSZ[A] and TxSZ[B] when TxEOP[A] is asserted when using the default configuration. TxSZ[D:A] is ignored when TxEOP[D:A] is not present.
TxDATA[A] TxDATA[A][15:8] TxDATA[A][7:0] TxSZ[A] TxSZ[B] DATA[31:24] DATA[23:16] TxDATA[B] TxDATA[B][15:8] TxDATA[B][7:0] DATA[15:8] DATA[7:0]
0 0 1 1
0 1 0 1
Valid Valid Valid Valid
Not valid Valid Valid Valid
Not valid Not valid Valid Valid
Not valid Not valid Not valid Valid
There is no byte swapping and the data bytes are packed into the upper transmitted bytes first.
32
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AN17 AL29 AA31 J31 Symbol TxEOP[D] TxEOP[C] TxEOP[B] TxEOP[A] Type 3.3 V (5 V tolerant) I/O I Name/Description Transmit End of Packet. These pins are used only in U2+ and U3+ (packet) modes. This signal indicates that the last word of a packet is on the TxDATA[D:A][15:0] bus. TxEOP[D:A] is valid only when TxENB[D:A] is asserted, and is sampled on the rising edge of TxCLK[D:A]. In U3+ (32-bit mode), only the TxEOP[A] input pin of port A is used to indicate the end of the incoming packet. Transmit Error. These pins are used only in U2+ and U3+ (packet) modes. TxERR[D:A] is only used in packet modes, and indicates that the current packet is to be aborted and discarded, if possible. TxERR[D:A] is only valid when TxEOP[D:A] and TxENB[D:A] are asserted, and is sampled on the rising edge of TxCLK[D:A]. In U3+ (32-bit mode), the TxERR[A] and the TxERR[B] input pin of port A is used to indicate an error on the incoming packet. Receive Address. Receive address is driven to the MPHY to poll and select the appropriate MPHY channel. Note: The address for each channel is configured by the microprocessor. 3.3 V O Receive Data Channel A. Used to transport data out of the UTOPIA PHY Rx block. RxDATA[A][15:0] is only valid when RxENB[A] is asserted, and is updated on the rising edge of RxCLK[A]. Note that RxDATA[A][15:0] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits 15 to 8 are valid. In U3 or U3+ (32-bit mode), RxDATA[A][15:0] forms the most significant 16 bits of the combined data bus (bits 31 to 16), and RxDATA[B][15:0] forms the least significant 16 bits of the combined data bus (bits 15 to 0). Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
AM18 AM30 AA35 H32
TxERR[D] TxERR[C] TxERR[B] TxERR[A]
3.3 V (5 V tolerant)
I
AP20 AL32 AL33 W32 W31 N31 N32 N33 N34 P31 P32 P33 P34 P35 R31 R32 R33 R34 R35 T32 T33
RxADDR[4] RxADDR[3] RxADDR[2] RxADDR[1] RxADDR[0] RxDATA[A][15] RxDATA[A][14] RxDATA[A][13] RxDATA[A][12] RxDATA[A][11] RxDATA[A][10] RxDATA[A][9] RxDATA[A][8] RxDATA[A][7] RxDATA[A][6] RxDATA[A][5] RxDATA[A][4] RxDATA[A][3] RxDATA[A][2] RxDATA[A][1] RxDATA[A][0]
3.3 V (5 V tolerant)
I
Agere Systems Inc.
33
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AE32 AF35 AF34 AF33 AF32 AF31 AG35 AG34 AG33 AG32 AG31 AH34 AH33 AH32 AH31 AJ34 AN25 AP25 AR25 AL24 AM24 AN24 AP24 AR24 AL23 AM23 AN23 AP23 AL22 AM22 AN22 AP22 Symbol RxDATA[B][15] RxDATA[B][14] RxDATA[B][13] RxDATA[B][12] RxDATA[B][11] RxDATA[B][10] RxDATA[B][9] RxDATA[B][8] RxDATA[B][7] RxDATA[B][6] RxDATA[B][5] RxDATA[B][4] RxDATA[B][3] RxDATA[B][2] RxDATA[B][1] RxDATA[B][0] RxDATA[C][15] RxDATA[C][14] RxDATA[C][13] RxDATA[C][12] RxDATA[C][11] RxDATA[C][10] RxDATA[C][9] RxDATA[C][8] RxDATA[C][7] RxDATA[C][6] RxDATA[C][5] RxDATA[C][4] RxDATA[C][3] RxDATA[C][2] RxDATA[C][1] RxDATA[C][0] Type 3.3 V I/O O Name/Description Receive Data Channel B. Used to transport data out of the UTOPIA PHY Rx block. RxDATA[B][15:0] is only valid when RxENB[B] is asserted, and is updated on the rising edge of RxCLK[B]. Note that RxDATA[B][15:0] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8bit mode), only bits 15 to 8 are valid. In U3 or U3+ (32-bit mode), RxDATA[B][15:0] forms the least significant 16 bits of the combined data bus (bits 15 to 0), and RxDATA[A][15:0] forms the most significant 16 bits of the combined data bus (bits 31 to 16). In this mode, channel B port must be provisioned to idle. In this mode, RxDATA[B][15:0] is valid when RxENB[A] is asserted, and RxDATA[B][15:0] is updated on the rising edge of RxCLK[A]. 3.3 V O Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB). Receive Data Channel C. Used to transport data out of the UTOPIA PHY Rx block. RxDATA[C][15:0] is only valid when RxENB[C] is asserted, and is updated on the rising edge of RxCLK[C]. Note that RxDATA[C][15:0] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3+ (8-bit mode), only bits 15 to 8 are valid. In U3 or U3+ (32-bit mode), channel C port must be provisioned to idle mode. Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
34
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AM13 AL13 AR12 AP12 AN12 AM12 AL12 AR11 AP11 AN11 AM11 AR10 AP10 AN10 AM10 AL10 AR9 AR22 AJ33 T34 Symbol RxDATA[D][15] RxDATA[D][14] RxDATA[D][13] RxDATA[D][12] RxDATA[D][11] RxDATA[D][10] RxDATA[D][9] RxDATA[D][8] RxDATA[D][7] RxDATA[D][6] RxDATA[D][5] RxDATA[D][4] RxDATA[D][3] RxDATA[D][2] RxDATA[D][1] RxDATA[D][0] RxPRTY[D] RxPRTY[C] RxPRTY[B] RxPRTY[A] Type 3.3 V I/O O Name/Description Receive Data Channel D. Used to transport data out of the UTOPIA PHY Rx block. RxDATA[D][15:0] is only valid when RxENB[D] is asserted, and is updated on the rising edge of RxCLK[D]. Note that RxDATA[D][15:0] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3+ (8-bit mode), only bits 15 to 8 are valid. In U3 or U3+ (32-bit mode), channel D port must be provisioned to idle mode. Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
3.3 V
O
Receive Parity. This signal indicates the parity on the RxDATA[D:A][15:0]. Odd or even parity may be provisioned through a software register. RxPRTY[D:A] is considered valid only when RxENB[D:A] is asserted, and is updated on the rising edge of RxCLK[D:A]. In U3 or U3+ (32-bit mode), the RxPRTY[A] parity pin of port A indicates the parity for the entire 32-bit data output. Receive Start of Packet/Cell. In ATM mode, RxSOP/C[D:A] signal marks the start of a cell on the RxDATA[D:A][15:0] bus. When RxSOP/C[D:A] is high on the clock cycle following the latching of an active RxENB[D:A] signal, the first word of the cell structure is present on the RxDATA[D:A][15:0] bus. In packet modes, the RxSOP/C[D:A] signal marks the start of a packet on the RxDATA[D:A][15:0] bus. When RxSOP/C[D:A] is high, the first word of the packet is present on the RxDATA[D:A][15:0] bus. RxSOP/C[D:A] is considered valid only when RxENB[D:A] is asserted, and is updated on the rising edge of RxCLK[D:A]. In U3 or U3+ (32-bit mode), only the RxSOP/C[A] pin of port A is used to indicate a start of packet/cell for the 32-bit data output.
AP9 AL21 AJ32 U31
RxSOP/C[D] RxSOP/C[C] RxSOP/C[B] RxSOP/C[A]
3.3 V
O
Agere Systems Inc.
35
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AL9 AP21 AK33 V33 Symbol RxPA[D] RxPA[C] RxPA[B] RxPA[A] Type 3.3 V I/O O Name/Description Receive Cell/Packet Available. This signal indicates when the TDAT042G5 receive FIFO can send data to the master device. The RxPA[D:A] signal behavior depends on the provisioned low watermark in the UTOPIA interface.
I
One-Cycle Delay Mode. This mode follows the UTOPIA Level 2 Standard. The RxPA response occurs one cycle after the address is polled. RxENB is asserted to activate the selected PHY. RxDATA and RxSOP are output one cycle after RxENB is sampled active by the PHY device. Two-Cycle Delay Mode. This mode follows the UTOPIA Level 3 baselined text*. The RxPA response occurs two cycles after the address is polled. RxENB is asserted to activate the selected PHY. RxDATA and RxSOP are output two cycles after RxENB is sampled active by the PHY device. RxPA[D:A] Assertion. RxPA[D:A] goes high (is asserted) when the amount of data in the receive FIFO has reached or exceeded the low watermark or there is end of packet (EOP) resident in the FIFO. RxPA[D:A] Deassertion. In ATM mode, the RxPA[D:A] signal goes low (is deasserted) when the FIFO has less than the low threshold amount of data and there is no EOP inside the FIFO (i.e., part of an ATM cell). Once the last byte of the current cell is transmitted, and if the amount of data within the FIFO is still less than the low threshold, RxPA[D:A] is deasserted. In packet mode, the RxPA[D:A] signal goes low (is deasserted) when the FIFO has less than the low threshold amount of data and there is no EOP inside the FIFO. Once the data transfer begins (since the amount of data has reached or exceeded the low watermark), and if there is no EOP below the low threshold (i.e., a long packet), the RxPA signal is deasserted when the FIFO is drained by the UTOPIA master device. In this case, the master must closely monitor the RxPA[D:A] signals and use these signals as data valid indicators to ensure that bad data is not read from the TDAT042G5. TDAT042G5 will deassert the RxPA[D:A] signal immediately when the FIFO is drained.
I
I
I
* ATM Forum Technical Committee, UTOPIA Level 3, STR-PHY-UL3-01.00, July 1999.
(See further description on next page.)
36
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AL9 AP21 AK33 V33 Symbol RxPA[D] RxPA[C] RxPA[B] RxPA[A] Type 3.3 V I/O O Name/Description Receive Cell/Packet Available. (continued)
I
Data Transfer. A TDAT042G5 ingress channel sends data when it has asserted RxPA[D:A] and the master device requests data (via RxENB[D:A]). In ATM mode, if the master device requests data using RxENB[D:A] and if the TDAT042G5 has less than the low watermark amount of data to send and there is no end of cell in the FIFO (RxPA[D:A] is deasserted), then the TDAT042G5 UTOPIA interface will send out data that should be ignored by the master, i.e., it does not send data from its internal FIFO. In ATM mode, once an ATM cell transfer starts, the Tx or Rx side must complete the transfer. If the transfer is not completed, then the cell will be corrupted. The transfer continues until either (1) the end of cell is reached, when the end of cell exists below the low watermark, or (2) the end of the FIFO is reached. If the end of the FIFO is reached, no underflow is flagged on the receive side. In ATM mode, the low watermark should be set so that at least one entire cell is in the FIFO prior to asserting RxPA[D:A]. In packet mode, once the data transfer begins, the RxPA[D:A] signal will remain asserted until the FIFO is drained if there is no EOP below the low watermark. During the time RxPA[D:A] is asserted, valid data is being transferred. RxPA[D:A] is updated on the rising edge of RxCLK[D:A]. In 32-bit mode, only the RxPA[A] pin of port A is used to indicate the packet/cell available status.
AM9 AN21 AK34 U34
RxENB[D] RxENB[C] RxENB[B] RxENB[A]
3.3 V (5 V tolerant)
I
MPHY Support. When the RxPA signals are used for MPHY direct status, the corresponding RxCLK[B, C, and/or D] must be provided. This clock will be the same as RxCLK[A]. Receive Data Enable (Active-Low). This signal is used to indicate to the UTOPIA PHY Rx block that it is selected. If RxENB[D:A] is high, no operation is performed. If RxENB[D:A] is low, the UTOPIA PHY Rx block sends data (not necessarily valid data).
I
In U3 or U3+ (32-bit mode), only the RxENB[A] input pin of port A is used to enable the transfer of data.
Agere Systems Inc.
37
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AM8 AN20 AL34 W33 Symbol RxCLK[D] RxCLK[C] RxCLK[B] RxCLK[A] Type 3.3 V (5 V tolerant) I/O* Iu Name/Description
/O Receive Clock. This clock is used to read cells or packets from the receive FIFO. RxCLK[D:A] can operate at speeds from dc to 104 MHz. For clock rates above 52 MHz, the receive clock must be placed in source mode. RxCLK[D:A] sourcing from the respective TxCLK[D:A] may be provisioned by CLOCK_MODE_Rx (see registers 0x020F, 0x0213, 0x0217, 0x021B on pages 114--115). In U3 or U3+ (32-bit mode), only the RxCLK[A] input/output pin of port A is used to clock the data output. If MPHY mode is used, then all clocks RxCLK[D:A] must be provided.
AN8 AM20 AK31 W35
RxSZ[D] RxSZ[C] RxSZ[B] RxSZ[A]
3.3 V
O
Receive Size. These pins are used only in U2+ and U3+ (packet) modes. This signal defines the valid bytes received and their packing within (1) RxDATA[D:A][15:0] for U2+ 16-bit mode, and (2) RxDATA[A][15:0] and RxDATA[B][15:0] for the U3+ (32-bit mode). The meaning of these bits may be inverted through UT register 0x0226 TxSIZE/RxSIZE mode, page 164. In U3+ (8-bit mode), RxSZ[D:A] are unused. For U2+ 16-bit mode, RxSZ[D:A] = 0 defines the MSByte of RxDATA[D:A][15:0], i.e., RxDATA[D:A][15:8], to be the last byte of the packet received when using the default configuration. RxSZ[D:A] = 1 defines the LSByte of RxDATA[D:A][15:0], i.e., RxDATA[D:A][7:0], to be the last byte of the packet received when using the default configuration. In U3+ (32-bit mode), the MSByte will be placed on RxDATA[A], bits 15 to 8. In the 16-bit mode, the MSByte will be placed on RxDATA[D:A], bits 15 to 8. For U3+ (32-bit mode), RxSZ[A] and RxSZ[B] are combined to define four states of the received data stream. RxSZ[C] and RxSZ[D] are unused. The following states are assigned by RxSZ[A] and RxSZ[B] when RxEOP[A] is asserted and the default configuration is provisioned.
RxDATA[A] RxDATA[A][15:8] RxDATA[A][7:0] RxSZ[A] RxSZ[B]DATA[31:24] DATA[23:16] RxDATA[B] RxDATA[B][15:8] RxDATA[B][7:0] DATA[15:8] DATA[7:0]
0 0 1 1
0 1 0 1
Valid Valid Valid Valid
Not valid Valid Valid Valid
Not valid Not valid Valid Valid
Not valid Not valid Not valid Valid
The data bytes are packed into the upper transmitted bytes first.
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
38
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 5. Pin Descriptions--Enhanced UTOPIA Interface Signals (continued) Pin AN9 AM21 AJ31 U32 Symbol RxEOP[D] RxEOP[C] RxEOP[B] RxEOP[A] Type 3.3 V I/O* O Name/Description Receive End of Packet. These pins are used only in U2+ and U3+ (packet) modes. This signal indicates that the last word of a packet is on the RxDATA[D:A][15:0] bus. RxEOP[D:A] is valid only when RxENB[D:A] is asserted, and is updated on the rising edge of RxCLK[D:A]. In U3+ (32-bit mode), only the RxEOP[A] output pin of port A is used to indicate the end of the outgoing packet. AP8 AR21 AK32 V32 RxERR[D] RxERR[C] RxERR[B] RxERR[A] 3.3 V O Receive Error. These pins are used only in U2+ and U3+ (packet) modes. RxERR[D:A] is only used in POS mode, and indicates that the current packet is to be aborted and discarded, if possible. RxERR[D:A] is only valid when RxEOP[D:A] and RxENB[D:A] are asserted, and is updated on the rising edge of RxCLK[D:A]. If the Rx FIFO overflows, RxERR[D:A] and RxEOP[D:A] are asserted to indicate a corrupted packet. RxERR is asserted when a CRC error occurs in any packet mode using CRC-16 or CRC-32. RxERR is asserted when an incoming packet has an abort flag at the end of its stream. In both of these cases, an RxEOP is asserted with the RxERR. RxERR is not asserted when a header does not match in PPP header attaching mode. In that case, no data is sent to the UTOPIA interface. In U3+ (32-bit mode), only the RxERR[A] output pin of port A is used to indicate an error on the outgoing packet.
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
Agere Systems Inc.
39
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 6. Pin Descriptions--Microprocessor Interface Signals Pin C7 Symbol RST Type 3.3 V (5 V tolerant) 3.3 V (5 V tolerant) 3.3 V (5 V tolerant) I/O* I
u
Name/Description Reset (Asynchronous) (Active-Low). Reset must be held active-low for a minimum of 100 ns. After deassertion of reset, the device is reset and available for use after 8 s. 3-State Control (Active-Low). ICT has an internal 100 k pullup. This control 3-states the digital outputs. It does not control the LVPECL outputs. 1-Second Performance Monitor (PM) Clock. PM clock can be generated on-chip. This signal will have a 50% duty cycle. PMRST clock may be programmed by core register 0x0013, bit 15 (PMRST_I/O_CTRL) to be either an output or input. As an output clock, it is derived from the transmit line clock, TxCKP/N. This clock is divided to produce a 1 second, 50% duty cycle clock output. As an input, PMRST is under software control and can be activated longer or shorter than once per second. In the software control mode with PMRST an input, the minimum pulse width of the external PMRST signal is 10 ms.
E7
ICT
Iu
D7
PMRST
I/O
D8 C8 B8 B7 A12 B12 C12 D12 E12 A11 B11 C11 D11 A10 B10 C10 D10 E10 A9 B9
MPMODE MPCLK CS INT DATA[15] DATA[14] DATA[13] DATA[12] DATA[11] DATA[10] DATA[9] DATA[8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2] DATA[1] DATA[0]
3.3 V (5 V tolerant) 3.3 V (5 V tolerant) 3.3 V (5 V tolerant) 3.3 V (open drain) 3.3 V (5 V tolerant)
Iu Iu Iu O
MPU Mode Select. This signal is set high for a synchronous microprocessor, or low for an asynchronous microprocessor. MPU Clock. This clock can operate from 1 Hz to 66 MHz when in synchronous mode. Chip Select (Active-Low). This signal must be low during register access. Interrupt (Active-Low). This signal goes low when the device generates an unmasked interrupt.
Iu/O Data Bus. This bus is a bidirectional data bus for writing and reading software registers. [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
40
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 6. Pin Descriptions--Microprocessor Interface Signals (continued) Pin B16 C16 D16 A15 B15 C15 E15 A14 B14 C14 D14 E14 B13 C13 D13 E13 E9 Symbol ADDR[15] ADDR[14] ADDR[13] ADDR[12] ADDR[11] ADDR[10] ADDR[9] ADDR[8] ADDR[7] ADDR[6] ADDR[5] ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0] ADS Type 3.3 V (5 V tolerant) I/O* Iu Name/Description Address Bus. This bus is used to address registers. [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
3.3 V (5 V tolerant) 3.3 V (5 V tolerant) 3.3 V (5 V tolerant) 3.3 V
Iu
Address Strobe (Active-Low). This signal indicates the address is valid for MPU access in the asynchronous mode, and transfer start for the synchronous mode. Read/Write. This signal is low to indicate a write operation and is high to indicate a read operation. Data Strobe (Active-Low). This signal used in the asynchronous mode (MPMODE = 0) indicates that the data is valid for MPU writes. Data Transfer Acknowledge (Active-Low). This signal acknowledges the data transfer cycle.
D9 C9
R/W DS
Iu Iu
E8
DT
O
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
Table 7. Pin Descriptions--General-Purpose I/O Signals: Interface Signals Pin AG5 AH2 AH3 AH4 Symbol GPIO[3] GPIO[2] GPIO[1] GPIO[0] Type 3.3 V (5 V tolerant) I/O* Iu/O Name/Description General-Purpose I/O. These programmable I/O pins may be used to monitor or control external circuitry. These pins may also be provisioned to cause an interrupt upon a change in their values.
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
Agere Systems Inc.
41
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 8. Pin Descriptions--JTAG Interface Signals Pin F2 F4 G5 G2 Symbol TCK TMS TDI TDO Type 3.3 V (5 V tolerant) 3.3 V (5 V tolerant) 3.3 V (5 V tolerant) 3.3 V I/O* Iu Iu Iu O Name/Description JTAG Test Clock. This 10 MHz signal provides timing for test operations. JTAG Test Mode Select. Controls test operations. TMS is sampled on the rising edge of TCK. JTAG Test Data In. Provides a 10 Mbits/s test data input signal. TDI is sampled on the rising edge of TCK. JTAG Test Data Out. This 10 Mbits/s data output signal is updated on the falling edge of TCK. The TDO output is 3-stated except when scanning out test data. JTAG Test Reset (Active-Low). This signal provides an asynchronous reset for the TAP. Under normal device operations, TRST should be pulled low. TRST is a Schmitt-triggered input.
G3
TRST
3.3 V (5 V tolerant)
Iu
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance. Note: JTAG interface signals are used for test operations that are carried out using the IEEE P1149.1 test access port. IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
42
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Pin Information (continued)
Table 9. Pin Descriptions--Power Signals Pin B6 A1, A2, A5, A6, A17, A18, A30, A31, A34, A35, B1, B2, B34, B35, C3, C33, D4, D27, D32, E1, E5, E11, E16, E20, E25, E31, E35, F1, F35, K5, L5, L31, M5, P4, R1, T5, T31, U35, V1, V2, V35, W1, Y5, Y31, AB5, AD5, AE5, AE31, AF5, AK1, AK35, AL1, AL5, AL11, AL16, AL18, AL20, AL25, AL31, AL35, AM4, AM32, AN3, AN33, AP1, AP2, AP34, AP35, AR1, AR2, AR5, AR6, AR18, AR19, AR30, AR31, AR34, AR35 E3 C6 A3, A4, A7, A8, A13, A16, A20, A23, A27, A28, A29, A32, A33, B3, B4, B32, B33, C1, C2, C4, C32, C34, C35, D1, D2, D3, D33, D34, D35, F3, G1, G35, H1, H3, H5, H35, N1, N35, T1, T35, V3, V31, Y1, Y4, Y35, AA5, AC1, AC35, AH1, AH35, AJ1, AJ35, AM1, AM2, AM3, AM33, AM34, AM35, AN1, AN2, AN4, AN6, AN32, AN34, AN35, AP3, AP4, AP32, AP33, AR3, AR4, AR7, AR8, AR13, AR16, AR20, AR23, AR28, AR29, AR32, AR33 E4
* P = power.
Symbol VDDA VDDD
Type* P P
I/O -- --
Name/Description Analog Power Supply. Digital Power Supply.
VDDD PLL GNDA GNDD
P P P
-- -- --
Digital Power Supply PLL. Analog Ground. Digital Ground.
GNDD PLL
P
--
Digital Ground PLL.
Agere Systems Inc.
43
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Pin Information (continued)
Table 10. Pin Descriptions--No Connect Pins Pin E6, D6 A19, A21, A22, A24, A25, A26, B5, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31, C5, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31, D5, D15, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D28, D29, D30, D31, E2, E17, E18, E19, E21, E22, E23, E24, E26, E27, E28, E29, E30, E32, E33, E34, F5, F31, F32, F33, F34, G4, G31, U33, V34, AL8, AL19, AM7, AM19, AN19, AN31, AP5, AP7 Symbol NC NC Type -- -- I/O -- -- Name/Description No Connection. Has internal pull-up resistor. Do not connect to these pins. No Connection. Do not connect to these pins.
44
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Overview
This device integrates the SONET/SDH interface termination functions with a generic cell/packet delineation circuit. It supports STS-48/STM-16, quad STS-12/STM-4, and quad STS-3/STM-1 interface rates. Up to four data channels transported within an STS-N payload are processed via the SONET/SDH termination blocks and the onchip data encapsulation/decapsulation engine. Packet or ATM data are transmitted/received by this device on the equipment side via the enhanced UTOPIA interface. SONET/SDH streams are transmitted/received by this device on the network side via the line interface. Concatenation levels supported by this device range from STS-1 to STS-48c. Valid standard concatenated SONET frame configurations for this device are STS-3c, STS6c, STS-9c, STS-12c, STS-15c, STS-18c, and STS48c. Non-standard concatenation levels (such as STS-4c, STS-5c, STS-7c, etc.) are supported as well. In STS-48 mode, four pointer processors are available. This allows an STS-48 frame to carry up to four concatenated subframes (for example, mapping of four STS-12c payloads into an STS-48 frame). In quad STS-3 and STS-12 modes, only one pointer processor is available. Therefore, only a single subframe may be mapped into an STS-3 or STS-12 frame (mapping a single STS-3c payload into an STS-12 frame, for instance). For details, see Table 22 on page 68. This device supports mapping for ATM cells into SONET/SDH, mapping for packet data via all existing or currently proposed standards (e.g., PPP, SDL) into SONET/SDH streams. Via SDL mapping, this device also supports packet over fiber or ATM over fiber, respectively. Figure 2 shows the overview block diagram, and Figure 3 shows the interface block diagram for this device.
PAYLOAD TERMINATION
PACKET/CELL PROCESSOR -ENCAPSULATION -SCRAMBLING -CRC GENERATION ENHANCED UTOPIA COMPATIBLE INTERFACE (U2, U2+, U3, U3+) PACKET/CELL PROCESSOR -DELINEATION -DECAPSULATION -UNSCRAMBLING -CRC VERIFICATION
LINE PATH TERMINATION TERMINATION
SINGLE STM-16/STS-48 OR QUAD STM-4/STS-12 OR QUAD STM-1/STS-3 LINE INTERFACE BLOCK LINE INTERFACE OVERHEAD PROCESSOR INSERT SPE MAPPER
ENHANCED UTOPIA INTERFACE
SINGLE STM-16/STS-48 OR QUAD STM-4/STS-12 OR QUAD STM-1/STS-3
OVERHEAD PROCESSOR MONITOR
POINTER INTERPRETER
CONTROL
P INTERFACE
5-6680(F).ar.15
Figure 2. Overview Block Diagram
Agere Systems Inc.
45
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Overview (continued)
Figure 3 shows the interface diagram of the IC.
TRANSMIT OVERHEAD PROCESSOR LINE INTERFACE STS-3/STM-1 STS-12/STM-4 STS-48/STM-16 OVERHEAD INTERFACE RECEIVE OVERHEAD PROCESSOR
SPE MAPPER
ATM/HDLC/SDL FRAME INSERTION SCRAMBLING ENCAPSULATION
UTOPIA Tx
ENHANCED UTOPIA INTERFACE POINTER INTERPRETER ATM/HDLC/SDL FRAME UNSCRAMBLING DECAPSULATION UTOPIA Rx
STS-3/STM-1 STS-12/STM-4 STS-48/STM-16
TOH INTERFACE
MPU INTERFACE
JTAG INTERFACE
5-6746(F)r.11
Figure 3. Interface Block Diagram The receive path terminates and processes section, line, and path overhead. It performs framing (A1, A2), descrambling, detects alarm conditions, and monitors section, line, and path BIP-Ns (B1, B2, B3), accumulating error counts for each level for performance monitoring purposes. Line and path remote error indications (M1, G1) are also accumulated. The payload pointers (H1, H2) are interpreted, and the synchronous payload envelope (SPE) is extracted. The transmit path inserts section, line, and path overhead. It inserts the framing pattern (A1, A2), performs scrambling, inserts AIS (optionally), and calculates and inserts section, line, and path BIP-8s (B1, B2, B3). Line and path remote failure indications (M1, G1) are inserted based on received BIP-8 errors. The payload pointers (H1, H2) are generated, and the SPE is inserted. When used to implement an ATM UNI, ATM cells are written into an internal 4-cell FIFO buffer using a generic 8-/16-/32-bit wide UTOPIA 2/3 compliant interface. Idle/unassigned cells are automatically inserted when the internal FIFO is empty. The device provides generation of the header check sequence and optionally scrambles the ATM payload.
46
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Overview (continued)
When used to implement a POS UNI, the device writes packets into an internal 256-byte FIFO buffer using a generic 8-/16-/32-bit wide enhanced UTOPIA 2/3 compliant interface. HDLC framing performs the insertion of flags, control escape characters, and the FCS fields. Either the CRC-ITU or CRC-32 (in regular or reversed mode) can be computed and added to the frame. Counts of transmitted packets and errored/dropped packets are accumulated for performance monitoring purposes.
ATM/HDLC/HDLC-CRC/PPP Support
TDAT042G5 supports the transfer of ATM cells or variable-length packets. Support for 52- or 53-byte cell sizes is provided at the UTOPIA interface through register provisioning. The following three types of packet data can be sent and received with HLDC-like framing: transparent HDLC, CRC, and PPP. Transparent HDLC contains 0x7E framing but no CRC. CRC mode is HDLC with an attached CRC. PPP has 0x7E framing with provisionable attached header information and CRC. When used to implement an ATM UNI, the device performs cell delineation on the SPE. HEC error correction is provided. Idle/unassigned cells may be dropped according to a programmable filter. Cells are also dropped upon detection of an uncorrectable header check sequence error. The ATM cell payloads are descrambled before being passed to a 4-cell FIFO buffer. The received cells are read from the FIFO using a generic 8-/16-/32-bit wide UTOPIA 2/3 compliant interface. Counts of received ATM cells, uncorrectable HEC errors, and correctable HEC errors are accumulated independently for performance monitoring purposes. When used to implement a POS UNI, the device descrambles the SPE before extracting HDLC frames. The control escape characters are removed. Descrambling can be performed after control escape byte destuffing (or before to control malicious HDLC expansion). The optional 16- or 32-bit error check sequence is verified for correctness. The packets are placed into a 256-byte FIFO buffer.* The received packets are read from the FIFO using a generic 8-/16-/32-bit wide enhanced UTOPIA 2/3 compliant interface. Counts of received packets and errored/ dropped packets are accumulated independently for performance monitoring purposes. The device POS implementation also allows the optional attach/detach of a per-channel provisionable PPP header.
* FIFOs are 256 bytes per channel and cannot be reallocated.
Agere Systems Inc.
47
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Overview (continued)
SDL Support
Supports the simplified data link (SDL) protocol, which is currently being reviewed in standards bodies. The implementation supports 4-byte modified SDL UNI including the following:
I I I I I I I
CRC-16 based frame delineation with 2-byte packet field length Forty-eighth order scrambler No HDLC-like packet expansion Optional CRC-16/-32 payload check Capable of packet-over-fiber operation (i.e., no SONET frame) Two user-programmable 6-byte OAM messages Optional offset field from 0 to 32 bytes
TDAT042G5 provides support for a provisionable offset to the packet to allow for the attachment of layer 2 routing information (e.g., MPLS tags). Table 11 defines the provisioned value for each offset. Table 11. Optional Offset Field Provisioned Value 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF Route Tag Length (Bytes) 0 1 2 3 4 5 6 7 8 10 12 14 16 20 24 32
The packet length value (header value that CRC is calculated over) will account for the total length of the packet datagram as well as the associated route tags.
48
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Overview (continued)
Over-Fiber Mode
Over-fiber mode is used for packet delivery over fiber. No SONET overhead is added in this mode. Since no SONET overhead is added, the OHP and PT blocks must be configured for the bypass mode. In transmitting from the TDAT042G5 to the line, the data engine maps the data payload into a full SONET frame starting at what normally would be the first A1 byte. The data engine continues to map payload into the full SONET frame until an end of packet or end of frame is reached, at which time the data engine halts the mapping of the incoming data stream into the SONET frame until the next start of frame. When TDAT042G5 is receiving from the line, the data engine must be provisioned to receive the maximum packet size, unless the location of the last byte of the packet is known in advance. If the size of the packet is not known, one must program the data engine to receive the entire SONET frame. The external UTOPIA interface device must then be capable of extracting the variable length packets from the full SONET frame. Details of the over-fiber mode are given in the Data Engine (DE) Block section, page 82.
Test and General-Purpose I/O Support
The device is provisioned, controlled, and monitored using a generic 16-bit microprocessor interface. A standard five-signal IEEE -1149.1 compliant JTAG test port is also provided for boundary-scan purposes. A 4-bit GPIO (general-purpose input/output) interface is provided to control and/or monitor other onboard devices.
External Interfaces
Figure 4 shows the external interfaces.
TXTOHF TXTOHCK RXTOHF RXTOHD RXREF RXTOHCK TXTOHD 4 4 4 4 348 SIGNAL PINS
TxFSYNC TxCK TxCKQ TxD ECLREF RxD RxCLK CLKDIV
2 2
OHP 4 x 24 Tx UTOPIA UTOPIA INTERFACE TX LINE +5 MPHY ADDRESS
2 32 2 32 2
4 x 24 Rx UTOPIA +5 MPHY ADDRESS
RX LINE
MPU AND TEST INTERFACE
5
4
16
16
ICT ADS DS GPIO DATA MPMODE CS JTAG RST PMRST MPCLK INT ADDR R/W DT
5-6745(F).br.3
Figure 4. External Interface Summary Diagram Agere Systems Inc. 49
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description
The block diagram for this device can be seen in Figure 5.
TOH I/O
OHP Tx LINE I/O TX LINE
PT
DE Tx UTOPIA I/O UTOPIA IF
RX LINE
Rx LINE I/O
Rx UTOPIA I/O
CTRL
MP
JTAG
GPIO
5-7055(F).br.2
Figure 5. Functional Block Diagram
50
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Line Interface Block
This device is designed to work with commonly available optoelectronic converters for OC-3, OC-12, and OC-48 line rates. It will also work with available multiplexer and demultiplexer chip sets for an STS-48/STM-16 line interface rate. The line interface will operate in one of three possible modes, and is provisioned through core register 0x0010 (mode), bits 4--0. These three values of the mode register are the only values allowed. Table 12. Line Interface Modes Mode[4:0] Core Register 0x0010 10000 01111 Interfaces Line Interface Signals
STS-48/STM-16 STS-12/STM-4
RxCKP/N, RxD[15:0]P/N, RxCLK[D]P/N, RxD[D]P/N, RxCLK[C]P/N, RxD[C]P/N, RxCLK[B]P/N, RxD[B]P/N, RxCLK[A]P/N, RxD[A]P/N, RxCLK[D]P/N, RxD[DP/N, RxCLK[C]P/N, RxD[C]P/N, RxCLK[B]P/N, RxD[B]P/N, RxCLK[A]P/N, RxD[A]P/N,
TxCKP/N, TxD[15:0]P/N TxCKP/N, TxD[D]P/N TxCKP/N, TxD[C]P/N TxCKP/N, TxD[B]P/N TxCKP/N, TxD[A]P/N TxCKP/N, TxD[D]P/N TxCKP/N, TxD[C]P/N TxCKP/N, TxD[B]P/N TxCKP/N, TxD[A]P/N
00000
STS-3/STM-1
This block provides the interface between the external SONET/SDH line components and the overhead processor (OHP) block. The line interface must provide transmit/receive functions for quad STS-3/STM-1, quad STS-12/ STM-4, and STS-48/STM-16 applications. All external inputs and outputs for the TDAT042G5 line I/O block are referenced to the positive edge of the clock. When the external devices are referenced to the negative edge, the differential input clock will need to be reversed at the TDAT042G5 input. Receive Line Interface Summary The following list summarizes the receive line interface operations for each STS mode:
I
In quad STS-3/STM-1 mode, the receive line interface provides four separate STS-3/STM-1 input pin groups. Each input group comprises a differential LVPECL 155.52 Mbits/s data input and a differential 155.52 MHz clock. Each input group provides data to only one of four (A, B, C, or D) OHP blocks. This interface is synchronous and requires an external CDR. In quad STS-12/STM-4 mode, the receive line interface provides four separate STS-12/STM-4 input pin groups. Each input group comprises a differential LVPECL 622.08 Mbits/s data input and a differential 622.08 MHz clock. Each input group provides data to only one of four (A, B, C, or D) OHP blocks. This interface is synchronous and requires an external CDR. In the STS-48/STM-16 mode, the device provides 16 differential LVPECL data inputs at 155.52 Mbits/s with a differential LVPECL 155.52 MHz clock. In this mode, an external 1:16 data demultiplexer with a 1/16 clock divider is required. External barrel shifter circuitry to byte align the data is not required. Multiplexers select between the terminal loopback data, the 32-bit parallel STS-48/STM-16 data bus, and the four STS-12/STM-4 or STS-3/STM-1 8-bit parallel data buses. The controls for these MUXes are mode (register 0x0010) and loopback (register 0x0012) provided by the control block (see Table 48 and Table 50 on pages 150--151). For STS-48 mode, the 155.52 MHz input clock is divided by two to 77.76 MHz and distributed to all four multiplexers. For the STS-12/STM-4 mode, each 622.08 MHz input clock is divided by eight to 77.76 MHz. Each 77.76 MHz clock is distributed to the appropriate clock multiplexer (A, B, C, or D). For the STS-3/STM-1 mode, each 155.52 MHz input clock is divided by eight to 19.44 MHz. Each 19.44 MHz clock is distributed to the appropriate clock multiplexer (A, B, C, or D). 51
I
I
I
I
Agere Systems Inc.
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Line Interface Block (continued)
Transmit Line Interface Summary The following list summarizes the transmit line interface operations for each STS mode.
I
In quad STS-3/STM-1 and STS-12/STM-4 modes, the transmit line interface receives 8 bits of data from each OHP block (A, B, C, and D) at 19.44 Mbits/s and 77.76 Mbits/s, respectively. An 8-to-1 parallel-to-serial conversion produces output data at 155.52 Mbits/s for STS-3/STM-1 mode and 622.08 Mbits/s for STS-12/STM-4 mode. For facility loopback, the outputs are multiplexed with the corresponding data from the STS-12/STS-3 (STM-4/STM-1) receive block and sent to four differentialLVPECL buffers. In STS-48/STM-16 mode, a 32-bit data word at 77.76 Mbits/s is received from the OH Then a 2-to-1 parallel-toP. parallel conversion is performed producing a 16-bit word at 155.52 Mbits/s. In this mode, an external 16:1 data demultiplexer is required. Facility loopback is not available for the STS-48/STM-16 mode. There is a single clock input, TxCKP/N, in the transmit case. The clock source rates are 622.08 MHz (STS-12/ STM-4), 155.52 MHz (STS-3/STM-1), or 155.52 MHz (STS-48/STM-16). In the STS-48/STM-16 case, two transmit clock modes are available, contra* and forward clocking. In the contraclocking mode, the transmit data is sent out as commanded by TxCKP/N; in addition, an internal PLL must be activated, core register 0x0010 bit 5, to minimize the phase delay between TxCKP/N and the transmitted data. In the forward clocking mode, the transmit data and the clock, TxCKQ (used to clock out the data), are sent in parallel to the transmit multiplexer. In STS-12/STM-4 and STS-3/STM-1 modes, the input clock is divided by eight producing the internal clock at 77.76 MHz and 19.44 MHz, respectively. In STS-48/STM-16 mode, the input clock is divided by eight to produce an internal clock at 77.76 MHz. The CLKDIV pin (H4) controls this division. Table 13 shows the required value of CLKDIV.
I
I
Table 13. Clock Settings for CLKDIV Pin CLKDIV Pin CLKDIV = 1 CLKDIV = 0
I
Description When in STS-12/STM-4 (622.08 MHz divide by 8). When in STS-3/STM-1, STS-48/STM-16 (155.52 MHz divide by 2).
TxFSYNCP/N is an optional external frame sync. This 8 kHz frame sync pulse must be synchronous with TxCKP/N. It is, at minimum, a one TxCKP/N clock cycle wide pulse that is latched in at the system rate (622.08 MHz or 155.52 MHz). TOH interface signal RxREF should not be used as a source to TxFSYNCP/N. The active edge of the transmit clock is the positive edge. When TDAT042G5 operates in asynchronous mode (MPMODE = 0), the line block provides the microprocessor clock to the microprocessor interface block. The CLKDIV pin must be set to ensure that the clock is always 77.76 MHz.
I I
Line interface timing is given in the Interface Timing Specifications section (see Table 168, page 267).
* Contra refers to a type of data transmission whereby a clock signal is received by a register before the register sends data.
52
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
SONET Framer
The SONET framer consists of the overhead processor (OHP) and path terminator (PT) blocks. The receive SONET framer requires 625 s to drop frame after the line input signal is lost. Once a valid receive line input is restored, the maximum average reframe time (MART) is 250 s.
Overhead Processor (OHP) Block
The OHP block terminates/generates the section and line overhead bytes of the line. The data rate of the TOH interface is given in Table 14. Timing for the TOH interface is given in the Interface Timing Specifications section (see Table 172 and Table 173, page 271). Table 14. R/T TOH Interface Rates Mode STS-48/STM-16 STS-12/STM-4 STS-3/STM-1 R/T TOH Interface Rate 20.736* Mbits/s 20.736 Mbits/s 5.184 Mbits/s
* This STS-48/STM-16 interface is a four-line interface resulting in an effective interface rate of 82.944 Mbits/s.
All receive transport overhead bytes are output on the RTOH interface for external processing. Transmit transport overhead bytes can optionally be inserted from the TTOH interface. The transmit transport overhead bytes can be inserted in one of three ways selected through software provisioning: (1) automatically by hardware, (2) via software provisioning, or (3) through the TOAC. Table 15 defines those overhead bytes that can be inserted via each of the three paths. In some cases, the user has the choice to insert the byte via software registers or through the TOAC. Superscripts in the table reference these insertion methods which are described in the footnotes. Table 15. TOAC Byte Insertion: An STS-3/STM-1 Example OH Parity3 (1st bit of 1st byte) X6 D13 X6 X6 D43 D73 D103 S15 X6 X6 X6 X6 X6 J05 Z04 Z04
B1-21 D1-21 X6 X6 D4-21 D7-21 D10-21 Z1-23
B1-31 D2-31 X6 X6 D4-31 D7-31 D10-31 Z1-33
E15 D23 X6 K12 D53 D83 D113 Z23
E1-21 D2-21 X6 K1-21 D5-21 D8-21 D11-21 Z2-23
E1-31 D2-31 X6 K1-31 D5-31 D8-31 D11-31 X6
F15 D33 X6 K22 D63 D93 D123 E23
F1-21 D3-21 X6 K2-21 D6-21 D9-21 D12-21 E2-21
F1-31 D3-31 X6 K2-31 D6-31 D9-31 D12-31 E2-31
1.Inserted via TOAC, but not part of SONET standard. 2.Inserted via software or automatically via hardware. 3.Inserted via TOAC only. 4.Inserted via software register only. 5.Inserted via TOAC or software register. 6.Inserted via TOAC hardware; should be included in TOAC interface timing.
Agere Systems Inc.
53
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Overhead Processor (OHP) Block (continued)
The TOAC inserter must insert the first bit of A1 at the TOAC input, TxTOHD[D:A], during the first clock cycle when TxTOHF = 1. The TOAC has a built-in parity checker. For the parity check, the value of the first inserted bit of A1 must be set to the parity value of the previous frame. The remainder of the inserted bits of the A1, A2 bytes are ignored by the transmit framer. Receive OHP Loss-of-Signal. The loss-of-signal block monitors the incoming scrambled data for the absence of transitions. When an absence of transitions is detected for a programmable length of time, a loss-of-signal (LOS) is declared. LOS is cleared when two valid framing patterns are detected, and during the intervening time, no LOS condition is detected. Framer. The frame block finds and locks onto the incoming A1 and A2 bytes of the SONET transport overhead. Loss-of-frame (LOF) is declared when a defect persists for more than 3 ms. LOF is cleared when the defect is absent for more than 3 ms. To prevent intermittent out-of-frame/in-frame conditions, the 3 ms timer is not reset to zero until an in-frame (or out-of-frame) condition persists for 3 ms. The framer is also responsible for performing bit rotations on the incoming data stream to ensure that the rest of the IC receives byte-aligned data. While in-frame, the A1/A2 framing bytes in each frame are compared against the expected pattern. Out-of-frame (OOF) is declared when five consecutive frames containing one or more framing pattern errors have been received. While out-of-frame, this block will monitor the receive data stream for an occurrence of the framing pattern. When a framing pattern has been recognized, the framer performs the necessary bit rotation and verifies that an error-free framing pattern is present in the next frame before declaring in-frame. J0 Section Trace. The section trace message is extracted and stored in a 16-byte memory for access by software. The first byte of the message can be provisioned to be either:
I I
The byte with the most significant bit (MSB) set high (for SDH), or The byte following a carriage return (0x0D) and line feed (0x0A) sequence (for SONET).
J0 mismatch detection is provided using one of four methods (provisionable via J0MONMODE[A--D][1:0]; see register description, page 173). Descrambler. The descrambler block implements the frame synchronous SONET descrambler with a generating polynomial of 1 + x6 + x7. The framing bytes (A1, A2), the section trace bytes (J0), and the growth bytes (Z0) are not descrambled. The descrambler may be disabled through a software register.
54
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Overhead Processor (OHP) Block (continued)
Receive OHP (continued) B1 BIP-8 Check. The SBIP block counts section BIP-8 (B1) errors. The SBIP value is calculated over the scrambled data of the complete previous frame. The calculated value is compared against the received B1 byte and differences (errors) are counted. A theoretical maximum of 64,000 errors may be detected per second. The SBIP block accumulates these errors in a 16-bit saturating counter. This counter operates in latch and clear mode to ensure Bellcore and ITU compliance with regard to not missing any events (bit errors). It is intended that this counter be polled at least once per second so that no error events are missed. Optionally, a maximum of only one SBIP error per frame can be counted (provisionable via B1BITBLKCNT[A--D]; see register description, page 174). This causes the error counter to only increment by one when one or more errors are detected. B2 BIP-N Check. The LBIP block counts line BIP-N errors. The LBIP value is calculated over the incoming frame and is compared to the received B2 bytes received in the next frame. The errors are counted. Optionally, a maximum of only one LBIP error per frame can be counted (B2BITBLKCNT[A--D]; see register description, page 174). This causes the block error counter to only increment by one when one or more errors are detected. A theoretical maximum of 3,072,000 errors may be detected per second. The LBIP block accumulates these errors in a 22-bit saturating counter. This counter is operated in latch and clear mode to ensure Bellcore and ITU compliance with regard to not missing any events (bit errors). It is intended that this counter be polled at least once per second so that no error events are missed. BER Check. The OHP block also detects provisionable signal fail (SF) and signal degrade (SD) conditions. The SF and SD values are provisioned through a group of software registers (SF addresses 0x0452--0x0469, SD addresses 0x043A--0x0451). The SF alarm can be provisioned for a bit error rate (BER) of between 10-3 to 10-5; the SD alarm can be provisioned for a bit error rate (BER) of between 10-5 to 10-9 (see Table 86, page 187).
Agere Systems Inc.
55
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Overhead Processor (OHP) Block (continued)
Receive OHP (continued) Figure 6 illustrates the parameters used in determining the bit error detection rate.
NUMBER OF MONITORING BLOCKS SFBSET[A--D] OR SDBSET[A--D] (IN THIS CASE, 3) NUMBER OF FRAMES IN A MONITORING BLOCK SFNSSET[A--D] OR SDNSSET[A--D], SFNSCLEAR[A--D] OR SDNSCLEAR[A--D] (IN THIS CASE, 7)
FRAME BOUNDARY BLOCK BOUNDARY SFLSET[A--D] OR SDLSET[A--D] SFLCLEAR[A--D] OR SDLCLEAR[A--D] SFMSET[A--D] OR SDMSET[A--D] SFMCLEAR[A--D] OR SDMCLEAR[A--D]
ACCUMULATED BIP ERROR COUNT: B1 OR B2 FOR LINE B3 FOR PATH
BLOCK GOOD/BAD COUNT
5-7934(F)
Figure 6. Signal Degrade and Failure Parameters for BER TDAT042G5 provides a method to monitor the BER at the line and path layers. The following explains the algorithm for this method to set and clear the BER. The algorithm for this method is the same for setting and clearing the BER, the only difference is the programmed values. TDAT042G5 includes two complete sets of identical counters, one used to determine signal fail (SF) and one used to determine signal degrade (SD). The only difference between SF and SD is the provisioned values. The same algorithm is used for both the line and path layers of SONET. The algorithm uses four sets of counters: labelled Ns (number of frames), L (number of errors), M (number of errored blocks), and B (total number of blocks). Each of these counters has different values that are provisioned to either set the BER high or clear the BER indication. The algorithm works by counting blocks, i.e., a preset number of SONET/SDH frames (Ns). If the number of errors in the block exceeds the provisioned level (L), then the errored block counter is incremented by 1; otherwise, the number of blocks in error stays at its current level. At this point, the frame counter and the error counter are reset back to 0 and start counting again. At the end of a preset number of blocks (B), the count in the errored block counter is compared against a provisioned threshold (M). If the total number of blocks in error equals or exceeds the provisioned threshold (M), then the BER alarm is raised. If the total number of blocks in error is less than the provisioned amount (M), then the BER alarm is cleared. The values used by the counters are determined by the state of the algorithm. If the BER state is low, then the SET parameters are used. If the BER state is high, then the CLEAR parameters are used. 56 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Overhead Processor (OHP) Block (continued)
Receive OHP (continued) Table 16 and Table 17 show values of Ns, L, M, and B for STS-3/STM-1, STS-12/STM-4, and STS-48/STM-16 to set and clear the BER indicator. SF registers are 0x0452--0x0469 and SD registers are 0x043A--0x0451. All SF/SD set and clear values are hexadecimal. Table 16. Ns, L, M, and B Values to Set the BER Indicator
Mode BER SF/SD Set Values Actual Number of Frames B* 3D 7 7 7 9 9 F -- -- A 8 8 8 8 8 -- -- 3F 3F E E E A -- 62 48 384 3840 47250 465000 4160000 -- 64 22 117 1152 11475 114750 1147500 -- 64 64 320 480 4710 46500 333300 -- Probability of Detecting L Errors (%) @BER 99.96 72.70 71.34 71.34 69.74 68.07 56.90 -- 100.00 84.92 67.93 66.19 65.75 65.75 65.75 -- 100.00 99.95 90.60 77.55 75.80 74.58 82.92 -- @BER/2 85.13 7.28 10.08 10.09 9.44 8.82 11.25 -- 88.43 9.64 7.17 6.66 6.53 6.53 6.53 -- 100.00 58.97 16.25 13.09 12.15 11.54 19.71 -- Probability of Declaring SF/SD (%) @BER 97.68 96.06 95.19 95.19 95.07 98.47 96.52 -- 100.00 98.38 96.48 95.46 95.16 95.16 95.16 -- 100.00 96.89 96.47 96.69 95.17 98.09 97.29 -- @BER/2 0.00 0.16 0.52 0.52 0.13 0.82 0.60 -- 0.04 0.00 0.25 0.19 0.18 0.18 0.18 -- 100.00 0.00 0.00 0.00 0.00 0.01 0.18 -- IntegraMaximum tion Time Number of Frames (s) 0.008 0.013 0.1 1 10 83 667 -- 0.008 0.008 0.025 0.25 2.5 21 167 -- 0.008 0.008 0.008 0.0625 0.625 5.2 42 -- 64 104 800 8000 80000 664000 5336000 -- 64 64 200 2000 20000 168000 1336000 -- 64 64 64 500 5000 41600 336000 --
Ns* STS-3/ STM-1 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-12/ STM-4 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-48/ STM-16 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 1 6 30 1E0 1275 B5A4 3F7A0 -- -- 2 D 80 4FB 31CE 1F20C -- -- 1 5 20 13A C1C 765C --
L* 6 9 7 7 7 7 4 -- -- B 8 8 8 8 8 -- -- E A 7 7 7 6 --
M* 3D 3 3 3 4 3 5 -- -- 6 3 3 3 3 3 -- -- 3F 35 8 8 7 6 --
* These are the numbers to be provisioned in TDAT042G5. The actual values of the BER algorithm are 1 greater than the actual value shown. s These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).
Agere Systems Inc.
57
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Overhead Processor (OHP) Block (continued)
Receive OHP (continued) Overhead (OH) Extract. All transport overhead (TOH) bytes are extracted and sent over the RxTOH interface for possible external processing. The number of bits sent are as follows:
I I I
STS-3/STM-1: 5,184,000 bits/s per interface STS-12/STM-4: 20,736,000 bits/s per interface STS-48/STM-16: 82,944,000 bits/s (over 4 serial lines (20,736 kbits/s each))
Table 17. Ns, L, M, and B Values to Clear the BER Indicator
Mode BER SF/SD Set Values Actual Number of Frames B* -- 7 7 7 7 9 9 F -- 6 A 8 8 8 8 8 -- E 3F 13 13 13 A -- 8 48 384 3840 47250 465000 4160000 -- 7 22 117 1152 11475 114750 1147500 -- 64 15 320 640 6280 62000 333300 Probability of Detecting L Errors (%) @BER*5 -- 85.13 93.01 84.42 84.42 83.66 82.86 46.31 -- 100.00 98.36 87.99 87.34 87.17 87.17 87.17 -- 100.00 100.00 95.07 87.34 86.52 85.95 84.89 @BER -- 0.39 11.33 6.84 6.84 6.59 6.35 1.48 -- 51.54 20.51 8.23 7.94 7.87 7.87 7.87 -- 45.99 60.11 7.28 7.94 7.61 7.38 7.00 Probability of Clearing SF/SD (%) @BER*5 -- 0.27 0.01 0.34 0.34 0.22 0.03 0.50 -- 0.00 0.07 0.02 0.02 0.03 0.03 0.03 -- 0.00 0.00 0.00 0.00 0.00 0.00 0.03 @BER -- 100.00 99.21 99.88 99.88 99.98 99.75 99.84 -- 99.03 100.00 99.59 99.64 99.65 99.65 99.65 -- 99.42 99.47 99.98 99.94 99.95 99.96 99.95 IntegraMaximum tion Time Number (s) of Frames -- 0.013 0.1 1 10 83 667 6670 -- 0.008 0.025 0.25 2.5 21 167 1670 -- 0.008 0.008 0.0625 0.625 5.2 42 420 -- 104 800 8000 80000 664000 5336000 53360000 -- 64 200 2000 20000 168000 1336000 13360000 -- 64 64 500 5000 41600 336000 3360000
Ns* STS-3/ STM-1 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-12/ STM-4 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-48/ STM-16 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 -- 1 6 30 1E05 1275 B5A4 3F7A0 -- 1 2 D 80 4FB 31CE 1F20C -- 1 5 20 13A C1C 765C
L* -- 6 2 2 2 2 2 2 -- 7 2 2 2 2 2 2 -- 2 3 2 2 2 2
M* -- 3 3 3 3 4 3 2 -- 6 8 3 3 3 3 3 -- D D 6 6 6 4
* These are the numbers to be provisioned inTDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown. These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).
58
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Overhead Processor (OHP) Block (continued)
Receive OHP (continued) The OH interface consists of clock, data, and frame. The data and frame signals update on the falling edge of the clock. The frame pulse is high for the most significant bit (MSB) of the first bit of the frame. Bytes J0, Z0, and F1 (current and previous), K1, K2, and S1 can also be extracted via software registers. Table 18 shows the ordering of the bytes for the allowed TOAC configurations. Table 18. TOAC Channel I/O vs. STS Number/Time Slot Output Rate STS-3/STM-1 TOAC Channel Input vs. Input STS Number/Time Slot Time 3 2 1 (Channel A) 3 2 1 (Channel B) 3 2 1 (Channel C) 3 2 1 (Channel D) 3 11 8 5 2 10 7 4 1 (Channel A) 3 11 8 5 2 10 7 4 1 (Channel B) 3 11 8 5 2 10 7 4 1 (Channel C) 3 11 8 5 2 10 7 4 1 (Channel D) 38 26 14 2 37 25 13 1 (Channel A) 41 29 17 5 40 28 16 4 (Channel B) 44 32 20 8 43 31 19 7 (Channel C) 47 35 23 11 46 34 22 10 (Channel D)
STS-12/STM-4
STS-48/STM-16
39 42 45 48
27 30 33 36
12 12 12 12 15 18 21 24
96 96 96 96 3 6 9 12
The overhead extract block also performs the following functions:
I
Error Monitors. The REI_L block counts remote error indication block errors. The M1 byte is extracted and counted. This represents the number of LBIP errors detected by the far-end equipment. Optionally, a maximum of only one REI-L error per frame may be counted (provisionable via M1BITBLKCNT[A--D]; register description, page 175). This causes the block error counter to only increment by one when one or more errors are detected. Automatic Protection Switch Signaling. The APS block filters the K1 and K2 bytes (automatic protection switching channel) and stores the validated message in software-accessible registers. The K bytes are validated after a programmable number of consecutive frames contain identical K1 (and K2[7:3] or K2[7:0]) values. APS protection switching byte failure is detected within this block when a programmable number of frames have passed without valid K bytes. The protection switching byte failure is removed upon detection of a programmable number of frames with identical K1 (and K2[7:3] or K2[7:0]) bytes. The use of K2[7:3] or K2[7:0] is provisionable via the K1K2_2_OR_1 register bit (see register description, page 169). Line Remote Defect Indicator. Bits 2, 1, and 0 of the K2 byte are monitored for the pattern 110. If this pattern appears for 3--15 (provisionable by OHP register CNTDK2) consecutive frames, RDI-L is asserted. RDI-L is removed when any pattern other than 110 is detected for 3--15 (provisionable by OHP register CNTDK2) consecutive frames. (See page 171 for register description of CNTDK2[A--D][3:0].) Line Alarm Indication Signal. Bits 6, 7, and 8 of the K2 byte are monitored for the pattern 111. If this pattern appears for 3--15 (provisionable by OHP register CNTDK2) consecutive frames, AIS-L is asserted. AIS-L is removed when any pattern other than 111 is detected for 3--15 (provisionable by OHP register CNTDK2) consecutive frames. (See page 171 for register description of CNTDK2[A--D][3:0].)
I
I
I
Agere Systems Inc.
59
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Overhead Processor (OHP) Block (continued)
Receive OHP (continued)
I
Rx Synchronization Message. The S1 block filters the synchronization message (S1) byte and stores the validated message in a software-accessible register. The synchronization message will be validated if a programmable number (in OHP register CNTDS1) of consecutive frames contain identical S1 values. An inconsistent synchronization message alarm will be reported if a provisional number (by OHP register CNTDS1FRAME) of consecutive frames pass without a validated message occurring. (See page 172 for register descriptions of CNTDS1[A--D][3:0] and CNTDS1FRAME [A--D][3:0].) F1 User Channel. The F1 byte is extracted by the OHP The F1 user channel is monitored for change of state . using OHP registers 0x0402, 0x0404, 0x0406, 0x0408 (see register map, page 116). The previous and current F1 values are stored in F1DMON1[A--D][7:0] and F1DMON0[A--D][7:0], respectively (see page 122 for register map, page 190 for register descriptions). DCC and Orderwire Bytes. The data communication channel (D1--D3, D4--D12) and orderwire bytes (E1, E2) can only be extracted via the TOAC. D1/D2/D3 Section Data Communications Channels (DCC). DCC outputs are taken from the TOAC. D4--D12 Line Data Communications Channels (DCC). DCC outputs are taken from the TOAC. M1 REI-L. REI-L is extracted by the OHP. Support for ATM/Packet-Over-Fiber. The transport overhead must be bypassed when operating in data-overfiber mode. In this mode, the TOH_BYPASS and ROH_BYPASS register bits must be set to 1. No overhead insertion/extraction is done when in bypass mode.
I
I
I I I I
Transmit OHP Overhead Insertion. Some transport overhead (TOH) bytes can optionally be inserted via the TxTOH interface and inserted into the TOH bytes (see Table 15, page 53). Certain bytes can be either inserted from values stored in registers or automatically generated. The TxTOH interface controls the insertion mechanism. Software insertion takes precedence over TOAC insertion. The number of bits received are as follows:
I I I
STS-3/STM-1: 5,184,000 bits/s per interface STS-12/STM-4: 20,736,000 bits/s per interface STS-48/STM-16: 82,944,000 bits/s (over 4 serial lines (20,736 kbits/s each))
S1 Synchronization Message. The S1 block controls the insertion of the S1 byte. The byte ordering is the same as the RxTOAC and is shown in Table 18 (see pa ge59). The S1 byte can be provisioned to come from the TxTOH interface or from a software-settable register. Control for message insertion is from software control register TS1INS[A--D] (see register description, page 179 and page 183). K1K2 APS Signaling. The APS block controls the insertion of the K bytes based on software provisioned K bytes, and alarm conditions (AIS-L, RDI-L). Inconsistent APS bytes can be inserted via register provisioning by TAPSBABBLEINS[A--D] (see register description, page 178 and page 183). RDI_L Generation. The following six alarms contribute to RDI_L generation: LOF, OOF, LOS, LOC, AIS_L, and SF. They can be inhibited from contributing to RDI-L via transmit control registers (addresses 0x042F, 0x0431, 0x0433, 0x0435; see register description, page 180).
60
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Overhead Processor (OHP) Block (continued)
Transmit OHP (continued) BIP-8 Generation. The SBIP block calculates the B1 value according to Bellcore and ITU standards. Insertion of SBIP errors is possible through the use of software control register TB1ERRINS[A--D] (see register description, page 180). The LBIP block calculates the B2 values according to Bellcore and ITU standards. Insertion of LBIP errors is possible through the use of software control register TB2ERRINS[A--D] (see register description, page 180). The REI_L block controls the insertion of the remote error indication block error count. J0 Section Trace. The section trace message is inserted either from the TxTOH interface or from a message stored in a 16-byte software-accessible memory. Control for message insertion is from software control register TJ0INS[A--D] (see register description, page 177 and page 181). SONET Scrambler. The scrambler block implements the frame synchronous SONET scrambler with a generating polynomial of 1 + x6 + x7. The scrambler may be disabled through a software register. A1/A2 Framing Bytes. A1 and A2 are automatically placed on the line. Errors can be inserted into A2 by setting OHP register TA1A2ERRINS[A--D][4:0] (see register description, page 180). E1/E2 Orderwire Bytes. The orderwire bytes for section and line are taken from the TOAC. D1/D2/D3 Section Data Communications Channels (DCC). DCC inputs are taken from the TOAC. D4--D12 Line Data Communications Channels (DCC). DCC inputs are taken from the TOAC. F1 User Channel. The F1 byte can be optionally inserted from stored values in OHP register TF1INS[A--D] (addresses 0x047E, 0x0480, 0x0482, 0x0484; see register description, page 179 and page 183). M1 REI-L. REI-L can be automatically generated and inserted into the outgoing SONET frame, or can optionally be inhibited. Errors can be inserted into M1 via OHP register TM1_ERR_INS[A--D] (addresses 0x042E, 0x0430, 0x0432, 0x0434; see register description, page 179 and page 183). Support for ATM/Packet-Over-Fiber. The transport overhead must be bypassed when operating in data-overfiber mode. In this mode, the TOH_BYPASS and ROH_BYPASS register bits must be set to 1. No overhead insertion/extraction is done when in bypass mode.
Agere Systems Inc.
61
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Path Terminator (PT) Block
The path terminator performs path overhead (POH) termination and extracts the payload for further processing by the downstream circuitry. The path terminator block interprets the incoming H1/H2 pointer of each incoming STS channel. The pointer interpreter supports up to four channels and performs path overhead termination on each channel. Each channel may be either an STS-1, STS-3c, STS-6c, STS-9c, . . . , STS-45c, or STS-48c. The pointer is validated according to Bellcore and ITU specifications. The H1/H2 pointers are used to determine the location of the first path overhead (POH) byte (J1). The pointer interpreter consists of a finite state machine (FSM) with four steady states. These states are defined as follows:
I I I I
Normal state Loss-of-pointer (LOP) Alarm indication signal (AIS) Concatenation
The transition between states will require several consecutive events to protect against transient conditions caused by bit errors during high BER conditions. The state machine is shown below in Figure 7.
1 NDF POINTER OR 3 NORMAL POINTERS
NORMAL 3 AIS INDICATIONS
AIS
3
8 NDF POINTERS OR 8 INVALID POINTERS
3 NORMAL POINTERS
AL
PO IN TE R
8
S
IN
3
C O NC
3
AI
S
IN
D
AT IC
IO
N
S
IN D IC AT IO N S
8 INVALID POINTERS LOP CONC
3 CONC INDICATIONS 5-7935(F)
Figure 7. Pointer Interpreter State Diagram The PT block monitors for the following conditions and takes appropriate actions:
I
Pointer Increment. TDAT042G5 uses an 11-bit counter to count the number of pointer increments and updates the associated counter holding register on the occurrence of PMRST (RPI_INC[A--D][10:0]; see register description, page 198). A pointer increment can occur when in the normal pointer mode. The following two methods can be used to determine if the pointer increment operation should be performed: 6-of-10 or 8-of-10 majority matching (selectable via software provisioning of register RINCDEC_6OR8MAJ [A--D]; see register description, page 200).
62
3 AIS INDICATIONS
V
3 CONC INDICATIONS
NO RM
I AL
D
PO
IN
TE
RS
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Path Terminator (PT) Block (continued)
I
Pointer Decrement. TDAT042G5 uses an 11-bit counter to count the number of pointer decrements and updates the associated counter holding register on the occurrence of PMRST (RPI_DEC[A--D][10:0]; see register description, page 198). A pointer decrement can occur when in the normal pointer mode. The following two methods can be used to determine if the pointer decrement operation should be performed: 6-of-10 or 8-of-10 majority matching (selectable via software provisioning of register RINCDEC_6OR8MAJ [A--D]; see register description, page 200). Loss-of-Pointer. LOP-P is declared as shown in the above state diagram. In an LOP-P state, none of the path overhead bytes are extracted. AIS-P. The AIS-P is declared when the H1 and H2 bytes are set to all ones. In an AIS-P state, none of the path overhead bytes are extracted. Concatenated Pointer. A concatenated pointer is detected when the new data flag is set and the pointer offset value is all ones. New Pointer. TDAT042G5 uses a 13-bit counter to count the number of new data flags that occur and updates the associated counter holding register on the occurrence of PMRST (RNDFCNT[A--D][12:0]; see register description, page 198). TDAT042G5 uses a 3-of-4 majority voting scheme to determine if the new data flag is set. Valid new data flags occur when the NDF bits are either 1001, 0001, 1101, 1011, or 1000. Normal Pointer. A normal pointer occurs when all of the following conditions are true simultaneously:
I
I
I
I
I
1. NDF is not set (NDF bits are either 0110, 0111, 0100, or 0010), 2. There is no invalid pointer value, 3. There is a valid offset (0 to 782)
I
Invalid Pointer. An invalid pointer is declared when neither a new data flag nor a normal pointer is detected.
SPE Terminate Receive Path Trace. The path trace message is extracted and stored in a 16-byte (SDH) or 64-byte (SONET) memory for access by software. The first byte of the message can be provisioned to be either of the following:
I I
For SDH mode, the byte with the most significant bit (MSB) set high (for SDH) For SONET mode, the byte following a carriage return (0x0D) and line feed (0x0A) sequence
The framing can also be disabled. Receive Error Monitor. The PBIP block counts path BIP-8 errors. A theoretical maximum of 64,000 errors may be detected per second. The PBIP block accumulates these errors in a 16-bit saturating counter. This counter is operated in latch and clear mode to ensure Bellcore and ITU compliance with regard to not missing any events (bit errors). It is intended that this counter be polled at least once per second in order that no error events are missed. The REI_P block counts remote error indication block errors.
Agere Systems Inc.
63
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Path Terminator (PT) Block (continued)
SPE Terminate (continued) Receive Signal Label. The C2 block will extract and validate the signal label byte (C2) and store it in a softwareaccessible register. The signal label is updated when a provisionable number of consecutive detections of a new C2 value occur (CNTDC2[A--D][3:0]; see register description, page 204). All monitoring is disabled when the pointer is in an LOP-P or an AIS-P state. Commonly used values of C2 with their signal labels are listed below in Table 19. Table 19. Types of Signal Labels C2 Value 0x00 0x01 0x13 0x16 Signal Label Unequipped STS SPE Equipped nonspecific payload Mapping for ATM Mapping for HDLC-PPP
Any value of C2 may be provisioned. If the provisioned value is not matched by the detected value, then data is not passed to the DE. If the provisioned value does match the detected value, then data is passed to the DE. TDAT042G5 will detect unequipped payloads (UNEQ-P) when a provisionable number of consecutive monitored C2 bytes match the 0x00 unequipped STS SPE state. TDAT042G5 will detect mismatched payloads (PLM-P) when a provisionable number of consecutive monitored C2 bytes do not match the provisioned expected payload label (RC2EXPVAL[7:0]; see register description, page 205). Receive Path Status. The G1 block extracts the path remote error indication (REI-P) bits of G1[7:4] and accumulates the REI-P errors in a 16-bit saturating counter. This counter is operated in latch and clear mode to ensure Bellcore and ITU compliance. It is intended that this counter be polled at least once per second in order that no error events are missed. RDI-P. This block will also validate the path remote defect indication (RDI-P) bits and store the result in a softwareaccessible register. The receive path can monitor remote defect indications in either enhanced or single bit RDI-P modes (provisionable via software bit RDIPMON_ENH_OR1B [A--D]; see register description, page 200). The interpretation of the G1 byte is as follows. Table 20. 1-bit Mode G1 Bytes G1[3:1] = 0xx G1[3:1] = 1xx Description No RDI-P defects AIS-P LOP-P ,
Table 21. 3-bit Mode (Enhanced RDI) G1 Bytes G1[3:1] = 001 G1[3:1] = 010 G1[3:1] = 101 G1[3:1] = 110 Description No RDI-P defects PLM-P or LCD-P AIS-P or LOP-P UNEQ-P or TIM-P (TIM-P is J1 mismatch*)
* TIM-P must be accomplished through (microprocessor) software by reading the transmit RDI-P state and inserting the G1 bit.
64
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Path Terminator (PT) Block (continued)
Z5/N1, Z4/K4, Z3/F3, H4, F2 Monitoring. TDAT042G5 monitors the F2 user channel byte, the H4 VT multiframe indicator byte, Z3/F3 growth/user byte, Z4/K4 growth/APS path byte, and the Z5/N1 tandem connection byte. These bytes are stored in software registers. These registers are updated when a provisionable number of detections of new values occur on the associated incoming byte. All monitoring is disabled when the pointer is in an LOP-P or an AIS-P state. Signal Failure and Signal Degrade Monitoring. The path overhead processor also detects/clears provisionable signal fail (SF) and signal degrade (SD) conditions. The SF and SD values are provisionable through a group of software registers in the PT register map. The provisioning is the same as that shown in Table 16, page 57 of the Overhead Processor (OHP) Block section. SPE Generate Transmit Pointer Generation. The pointer generation block generates the outgoing H1 and H2 pointer values. Each of the four PT channels can generate one normal (valid) pointer. Therefore, in STS-3/STM-1 and STS-12/ STM-4 modes, only one normal pointer (and only one SPE) may be inserted into the transmitted SONET/SDH frame. In STS-48/STM-12 mode, all four PT channels are used. Therefore, up to four normal pointers (and four SPEs) may be inserted into the transmitted SONET/SDH frame. When inserting concatenated frames, only the first H1 and H2 bytes will contain a valid pointer value. The remaining H1 and H2 bytes of the channel will be set to indicate concatenation. The remaining unequipped channels will have their H1 and H2 pointers set to a fixed pointer value. For proper pointer generation, the appropriate values must be provisioned in the H-byte transmit state register THx_STATE (see register description, page 203). The following examples illustrate how the device may be configured to transmit various sub-rates and concatenated payloads. Each block in the following diagrams represents one STS-1 frame. Figure 8 illustrates how to provision the THx_STATE registers to transmit an STS-48c frame within an STS-48 signal. In this example, the pointer to the first STS-1 is provisioned as a normal pointer value while the pointers to the remaining STS-1 signals are provisioned as concatenated pointers. Figure 9 illustrates how to provision the THx_STATE registers to transmit four STS-12c frames within an STS-48 signal. The concatenated STS-Mc frames that may be mapped into STS-N signals (where M N) are restricted to those listed in Table 22 (see page 68).
12 39 42 45 48 11 27 30 33 36 10 15 18 21 24 9 3 6 9 12 8 38 41 44 47 7 26 29 32 35 6 14 17 20 23 5 2 5 8 11 4 37 40 43 46 3 25 28 31 34 2 13 16 19 22 1 1 4 7 10 NORMAL POINTER 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 00 01 01 01 THX_STATE[A][12--1][1:0] THX_STATE[B][12--1][1:0] THX_STATE[C][12--1][1:0] THX_STATE[D][12--1][1:0] TIME-SLOT NUMBER
47 CONCATENATED POINTERS
0351(F)
Figure 8. STS-48 Signal Carrying One STS-48c Frame Agere Systems Inc. 65
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Path Terminator (PT) Block (continued)
SPE Generate (continued)
12 39 42 45 48 11 27 30 33 36 10 15 18 21 24 9 3 6 9 12 8 38 41 44 47 7 26 29 32 35 6 14 17 20 23 5 2 5 8 11 4 37 40 43 46 3 25 28 31 34 2 13 16 19 22 1 1 4 7 10 TIME-SLOT NUMBER
FOUR NORMAL POINTERS 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 00 01 01 01 00 01 01 01 00 01 01 01 00 01 01 01 THX_STATE[A][12--1][1:0] THX_STATE[B][12--1][1:0] THX_STATE[C][12--1][1:0] THX_STATE[D][12--1][1:0]
44 CONCATENATED POINTERS
0352(F)
Figure 9. STS-48 Signal Carrying Four STS-12c Frames
12 12a 12b 12c 12d
11 9a 9b 9c 9d
10 6a 6b 6c 6d
9 3a 3b 3c 3d
8 11a 11b 11c 11d
7 8a 8b 8c 8d
6 5a 5b 5c 5d
5 2a 2b 2c 2d
4 10a 10b 10c 10d
3 7a 7b 7c 7d
2 4a 4b 4c 4d
1 1a 1b 1c 1d
TIME-SLOT NUMBER
CONCATENATED POINTERS 10 10 10 10 10 10 10 10 10 10 10 10 01 01 01 01 10 10 10 10 10 10 10 10 10 10 10 10 01 01 01 01 10 10 10 10 10 10 10 10 10 10 10 10 00 00 00 00 THX_STATE[A][12--1][1:0] THX_STATE[B][12--1][1:0] THX_STATE[C][12--1][1:0] THX_STATE[D][12--1][1:0] NORMAL POINTERS
UNEQUIPPED POINTERS
UNEQUIPPED POINTERS
UNEQUIPPED POINTERS
0353(F)
Figure 10. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-3c Frame
66
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Path Terminator (PT) Block (continued)
SPE Generate (continued)
12 12a 12b 12c 12d 11 9a 9b 9c 9d 10 6a 6b 6c 6d 9 3a 3b 3c 3d 8 11a 11b 11c 11d 7 8a 8b 8c 8d 6 5a 5b 5c 5d 5 2a 2b 2c 2d 4 10a 10b 10c 10d 3 7a 7b 7c 7d 2 4a 4b 4c 4d 1 1a 1b 1c 1d TIME-SLOT NUMBER
NORMAL POINTERS 01 10 10 01 01 01 10 10 01 01 01 10 01 01 01 01 01 10 10 10 01 01 10 10 01 01 01 10 01 01 01 01 01 10 10 10 01 01 10 10 01 01 01 10 00 00 00 00 THX_STATE[A][12--1][1:0] THX_STATE[B][12--1][1:0] THX_STATE[C][12--1][1:0] THX_STATE[D][12--1][1:0]
0354(F)
Figure 11. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-12c Frame (Channel A), One STS-9c Frame (Channel B), One STS-6c Frame (Channel C), and One STS-3c Frame (Channel D)
12 3a 3b 3c 3d
11 2a 2b 2c 2d
10 1a 1b 1c 1d
9 3a 3b 3c 3d
8 2a 2b 2c 2d
7 1a 1b 1c 1d
6 3a 3b 3c 3d
5 2a 2b 2c 2d
4 1a 1b 1c 1d
3 3a 3b 3c 3d
2 2a 2b 2c 2d
1 1a 1b 1c 1d
TIME-SLOT NUMBER
CONCATENATED POINTERS 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 00 00 00 00 THX_STATE[A][12--1][1:0] THX_STATE[B][12--1][1:0] THX_STATE[C][12--1][1:0] THX_STATE[D][12--1][1:0] NORMAL POINTERS
0355(F)r.1
UNEQUIPPED POINTERS
Figure 12. Quad STS-3 Configuration With Each STS-3 Signal Carrying One STS-2c Frame
Agere Systems Inc.
67
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Path Terminator (PT) Block (continued)
SPE Generate (continued) The general rule for mapping STS-Mc frames in STS-N signals (M N) is that the TDAT042G5 can have a maximum of four normal pointers in STS-48 mode. For M 12, the valid starting locations for mapping into an STS-48 signal are 1, 13, 25, and 37. For M >12, only one normal pointer is permitted and it must start at the first location (the first STS-1). The TDAT042G5 allows only one normal pointer in STS-3 or STS-12 modes. The only valid starting location for mapping concatenated frames into an STS-3 or STS-12 signal is 1. Table 22. Valid Concatenation Starting Locations: STS-Mc into an STS-48c STS-1 Number 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 STS-3c Y No No No Y No No No Y No No No Y No No No STS-6c Y No No No Y No No No Y No No No Y No No No STS-9c Y No No No Y No No No Y No No No Y No No No STS-12c Y No No No Y No No No Y No No No Y No No No STS-15c Y No No No No No No No No No No No No No No No STS-18c Y No No No No No No No No No No No No No No No STS-48c Y No No No No No No No No No No No No No No No
68
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Path Terminator (PT) Block (continued)
SPE Generate (continued) BIP-8. The PBIP block calculates the B3 value according to Bellcore and ITU standards. Insertion of PBIP errors is possible through the use of a software control register. REI Generation. The REI_P block controls the insertion of the remote error indication block error count. The received PBIP error counts are inserted into the path status (G1) byte. RDI-P Generation. The transmit path can insert remote defect indications using either single-bit or enhanced RDI-P modes (provisionable via software register bit TRDIP_ENH_OR1B[A--D]; see register description, page 202). The highest to lowest priority of the defect code insertion is as follows: 1. AIS-P LOP-P (applies only to the single-bit version of RDI-P), , 2. UNEQ-P, 3. PLM-P LCD-P , , 4. No defects TIM-P can be inserted using software through TRDIPSINS (registers 0x0AAA, 0x0AB2, 0x0ABA, or 0x0AC2, bits 15--11; see register description, page 201). The LCD-P defect is observed in the data engine and passed to the pointer block for transmission. Each particular defect can be inhibited from contributing to the transmitted RDI-P insertion value via software registers 0x0AAA, 0x0AB2, 0x0ABA, and 0x0AC2. RDI_P can either be inserted by software or automatically through hardware. Z5/N1, Z4/K4, Z3/F3, H4, F2 Insertion. TDAT042G5 inserts the F2 user channel byte, the H4 VT multiframe indicator byte, Z3/F3 growth/user byte, Z4/K4 growth/APS path byte, and the Z5/N1 tandem connection byte via software provisioning. Error Insertion Mechanisms. TDAT042G5 provides a method to inject via software REI-P (TREIPERRINS[A--D]) and B3 (TB3ERRINS[A--D]) errors into the transmitted SONET frame (see register descriptions, page 202). Insertion of J1, F2, C2, Z3, H4, Z4, Z5, SS Values. TDAT042G5 provides paged provisionable registers to insert the path overhead bytes into the outgoing SONET frame. The paging is done by first writing to the page provisioning register at location 0x0AC6 to set the port number and time slot to be provisioned, and then writing to the appropriate insertion registers. Available time-slot values for TDAT042G5 are time slot 1 for STS-48c mode; time slots 1, 2, 3, and 4 for STS-48 consisting of four STS-Mc (M 12) signals; and time slot 1 for quad STS-12c and quad STS-3c modes (ports A, B, C, and D configured for quad STS-3c and quad STS-12c).
Agere Systems Inc.
69
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Data Engine (DE) Block
The DE block processes ATM, SDL, PPP, and HDLC cells/packets at rates up to 2.488 Gbits/s. The DE block behaves like four independent logical data channels, one for each of the four STS-12/STM-4 or STS-3/STM-1 channels, or like a separate single channel for STS-48/STM-16. The following description is for each one of these data engines. Each of the functional elements to be described are independently provisioned. The data engine supports both ATM cells and packet data formats.
I I
The ATM processor functions with 52-byte, 53-byte, and 56-byte ATM cells. The packet processor has three packet modes: HDLC, CRC, and PP All three modes use HDLC framing, i.e., P. 0x7E delineates the packets. In HDLC mode, the 0x7E framing bytes are inserted or detected by the data engine. In the CRC mode, a user-selectable 16-bit or 32-bit CRC word is appended or detected at the end of the packet. The PPP mode places or detects a PPP header on the front of the packet as well as uses the CRC word.
The block diagram for the data engine is shown in Figure 13.
RECEIVE-SIDE DE BLOCK
CBINT
SDL FRAMER
ATM FRAMER
PT INTERFACE
RX SEQUENCER
X43 POSTUNSCRAMBLER
HDLC FRAMER
X43 PREUNSCRAMBLER
CRC CHECKER
PPP DETACH UT INTERFACE
TRANSMIT-SIDE DE BLOCK
CBINT
SDL INSERTER
ATM INSERTER
PT INTERFACE
TX SEQUENCER
X43 POSTSCRAMBLER
HDLC INSERTER
X43 PRESCRAMBLER
CRC GENERATOR
PPP ATTACH UT INTERFACE
5-8385(F)r.2
Figure 13. Block Diagram of Date Engine (DE) 70 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Data Engine (DE) Block (continued)
Receive Data Engine Receive Sequencer. The receive sequencer demaps SONET framing to four logical channels, performs the physical channel byte alignment and packing, and performs appropriate payload clock domain transfer. The receive sequencer must be provisioned properly for correct operation. There are six registers that are fixed for each particular mode of operation (STS-3/STM-1, STS-12/STM-4, or STS-48/STM-16) and must not be modified (SEQ_CTRL, INIT_CNTS, OH_MARKER_LO, OH_MARKER_HI, SOH_MARKER_LO, SOH_MARKER_HI). See the register descriptions for details, page 214. Also, the appropriate time slots must be provisioned for the rate of the payload expected for each channel. This is done via the registers Rx_TS[1--12] (see register descriptions, page 219). An example of how to configure this for STS-48c mode is shown in the section on configuring the transmit/receive sequencer (see Transmit Data Engine section, page 78). ATM Cell Processor. The cell processor performs ATM cell delineation using the ATM header error correction (HEC) field found in the cell header. The HEC is a CRC-8 calculation over the first four octets (total of 32 bits) of the ATM cell header. If the TDAT042G5 is in bit-synchronous mode (data is not byte-aligned), 32 separate HEC calculations are performed to delineate an ATM cell. If the TDAT042G5 is in byte-synchronous mode (data is bytealigned), four separate HEC calculations are performed to delineate an ATM cell. An alpha-delta counter is used to track the processor's ability to frame the ATM cells consistently. When a certain level of confidence is reached (defined by the programmable delta counter threshold), the frame is declared in sync state, and data is passed to subsequent blocks. If the framer is unable to frame ATM cells over a few cell periods (defined by the programmable delta counter threshold), the framer resumes hunt state. In SONET mode, the processor performs optional X43 unscrambling of the payload. Because the X43 scrambler is self-synchronizing, the framer needs no assistance from the data in order to synchronize the scrambler. The TDAT042G5 also supports an X31 scrambler, compliant with I.432, which is mainly used for packet-over-fiber applications. The state diagram for the X31 scrambler is shown in Figure 14 on page 72. The X31 scrambler uses an x31 + x28 + 1 polynomial to scramble the data. Unlike the X43 scrambler, the X31 scrambler does not selfsynchronize based upon the data it receives. Thus, one-bit samples of the scrambler output are sent on the transmit side and compared with the scrambler samples on the receive side every 212 bits. If the samples do not match, the receive-side scrambler is adjusted to converge with the transmit-side scrambler. This process continues until a certain level of confidence in the scrambler synchronization is achieved. In the X31 mode, the ATM cell processor does not send out any output until both the framer and the scrambler are synchronized, whereas in X31 mode, only the framer needs to be synchronized. Idle ATM cells, which contain no real data, can be either left in or removed from the bit stream. The idle cell header description can be configured, though it is set to a default value (0x00000001). ATM cells can also be filtered if the header contents match a provisioned match register after masking with a provisionable mask register. This allows filtering based on the contents of the GFC, PTI, and CLP fields of the header. Optionally, ATM cells may be dropped if uncorrectable HEC errors are detected. Incoming single-bit ATM header errors can be corrected and the cells may be passed through or dropped, depending on the software configuration. The data engine processes only standard 53-byte ATM cells. However, the UTOPIA block processes 52-byte, 53byte, 54-byte, and 56-byte cells, and interfaces these to the data engine. (See UTOPIA (UT) Interface Block, page 86, for details).
Agere Systems Inc.
71
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Data Engine (DE) Block (continued)
Receive Data Engine (continued)
COUNTER EQUALS Y VERIFICATION SYNCHRONIZED
COUNTER LESS THAN Y
COUNTER DROPS BELOW V
COUNTER DROPS BELOW W
COUNTER EQUALS X ACQUISITION
COUNTER LESS THAN X
5-8388(F)
Note: Even in synchronized mode, the confidence counter can continue to increase up to the Z value.
Figure 14. State Diagram for the X31 Scrambler Synchronization Process SDL Frame Processor. The SDL frame processor consists of an SDL framer, which detects the start of SDL packets, and an (optional) X48 unscrambler, which is used to unscramble payload data. SDL packets can also arrive unscrambled, in which case the unscrambler is disabled. The SDL frame processor can frame packets in SDL form which contain a data length between 4 and 65,535 bytes. The SDL framer uses a CRC-16 check upon 2 bytes sequences used to determine packet length in order to frame SDL packets. Since the framer is designed to support data that is not byte-aligned, 32 separate framers may be used to search for the CRC-16 pattern. If the data is byte-synchronized, only four framers are needed. A confidence counter is used to gauge the framer's ability to frame SDL packets consistently. When the confidence counters reaches a certain level (defined by the programmable SDL delta counter register), the framer is in sync state. Single-bit error correction for the SDL headers is also supported. Shown below in Figure 15 is the general structure of the SDL packets. In this figure, there is no interpacket fill.
PACKET PAYLOAD
PACKET LENGTH
CRC-16
PACKET PAYLOAD
PACKET LENGTH
CRC-16
PACKET PAYLOAD
5-8386(F)r.2
Figure 15. General Structure of SDL Packets
72
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Data Engine (DE) Block (continued)
Receive Data Engine (continued) Interpacket fill separating packets always contains a multiple of 4 bytes. The SDL framer is able to detect interpacket fill since its value is fixed. (It has 4 bytes equal to 0x0000000, i.e., a packet length of 0x0000 with a CRC-16 of 0x0000.) Since the framer knows the length of a particular packet and can detect interpacket fill, it will predict the start of the next frame and frame on it. The SDL frame processor supports SDL and SDL CRC modes. When operating in SDL CRC mode, a 2-byte or 4-byte CRC for the packet payload is attached to the end of the packet payload prior to the next packet length. When operating in SDL mode, there is no 2-byte or 4-byte CRC for the packet payload. The SDL frame processor supports X48 scrambling of the packet payload, which is accomplished by using a primitive polynomial of x48 + x28 + x27+ x + 1. The X48 scrambler is not self-synchronizing. Thus, the side transmitting SDL packets will periodically send its 48-bit scrambler state within the data stream such that the receive side can synchronize its scrambler. Whenever the SDL frame processor receives a scrambler state, it is immediately put into sync state, which allows it to send data out. Upon receiving additional scrambler states, the scrambler will compare its own state with the state received. If the scrambler states match, then the scrambler remains in sync state. However, if there is a mismatch, the scrambler is put into postsync state. In postsync state, if an additional scrambler state mismatch occurs, the X48 scrambler is resynchronized with the scrambler state it has received. The SDL frame processor detects scrambler state data since the packet length field of 0x001 and the length of time separating scrambler state transmissions is programmable. Single-bit error correction for the SDL scrambler state is incorporated within the TDAT042G5. Both the SDL framer and the X48 scrambler must be synchronized before the SDL frame processor will send data. Besides the SDL scrambler state being transmitted, the SDL framer will also extract special A and B messages used by the upstream device to send link layer 1 messages to the downstream hardware. The packet length field used to detect A and B messages are 0x0002 and 0x0003, respectively. In addition to scrambling the data, the SDL data stream coming into the SDL frame processor is dc balanced with the 32-bit value 0xB6AB31E0. Table 23 below is used to describe the packet length field. Table 23. Packet Length Field Packet Length Field 0x0000 0x0001 0x0002 0x0003 0x0004-- 0xFFFF SDL Data Type Interpacket fill SDL scrambler state A message B message Length of payload region for current packets (in bytes)
Pre-descrambler. The pre-descrambler block descrambles the payload using a self-synchronous descrambler with a generator polynomial of 1 + x43. For ATM cell traffic, only the 48-byte cell payload (and not the cell overhead) is descrambled. For HDLC and PPP packets, the entire frame (including header and trailer) is descrambled. Predescrambling, post-descrambling, or no descrambling may be selected through a provisionable register.
Agere Systems Inc.
73
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Data Engine (DE) Block (continued)
Receive Data Engine (continued) HDLC Framer. The packet processor frame aligns to HDLC packets using the HDLC flag character (0x7E). Flags are also used to fill interpacket spaces. The flags are removed and control escape destuffing is performed. The control escape character (0x7D) is searched for and when it is found, the control escape character is removed, i.e., 0x7D5D is unescaped to 0x7D and 0x7D5E is unescaped to 0x7E. If dry mode is enabled, then 0x7D20 is unescaped to a value of 0x00, which represents dry data (FIFO underflow in the middle of a packet). Any other unescaped sequence of 0x7D results in an errored packet. CRC Check. An optional CRC-ITU or CRC-32 calculation on the whole POS frame is performed after byte destuffing and data descrambling. The CRC-ITU generating polynomial is 1 + x5 + x12 + x16. The CRC-32 generating polynomial is 1 + x + x2 + x4 + x5 + x7 + x8 + x10 + x11 + x12 + x16 + x22 + x23 + x26 + x32. The computation over the whole packet, including the FCS field, should result in all zeros. A different value indicates an error. Packets with FCS errors are marked as such and are discarded. CRC field stripping is optional. Both normal and reversed CRC modes are supported. Post-descrambler. The descrambler block descrambles the payload using a self-synchronous descrambler with a generator polynomial of 1 + x43. For ATM cell traffic, this block is bypassed. For HDLC frames, the entire frame (including header and trailer) is descrambled. The descrambler may be disabled through the use of a software register.
74
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Data Engine (DE) Block (continued)
Receive Data Engine (continued) PPP Header Detach. The PPP detach function matches the PPP header (corresponding to the first 4 bytes of the PPP uncompressed frame or first 2 bytes of the PPP compressed frame) to a set of fixed or provisionable values for each channel and outputs frames in accordance with payload control register settings. The address and control field bytes are assumed to be 0xFF03. The block supports two fixed protocol fields (0x0021 corresponding to the IP protocol field, and 0x8021 corresponding to the IP control protocol). Additionally, 12 provisionable registers, PPP_Rx_HDR [0--11][15:0] (addresses 0x10F0--0x10FB), are supported on-chip to allow a large number of protocols to be recognized in the receive (ingress) data path of the chip. The PPP detach function supports compressed or uncompressed header fields, optionally matching two fixed (one corresponding to IP protocol) 16-bit protocol fields. This optional PPP header check allows PPP (normal or compressed (i.e., no FF03)) to be checked and the header optionally stripped. Packets that fail to match one of the provisioned headers or the two default headers can optionally be discarded. This function supports optionally matching 12 programmable 16-bit protocol fields. The PPP detach function provides mismatched PPP header count on a per-channel basis through four 28-bit counters, PM_MHC_[0--3][27:0] (addresses 0x1118--0x111F). The function can optionally discard frames if header fields do not match on a per-channel basis. It can also optionally strip header fields only if they do match on a per-channel basis. A PPP packet has the following two formats:
UNCOMPRESSED PPP PACKET PACKET 1 byte 1 byte ADDRESS FIELD 0xFF 1 byte CONTROL FIELD 0x03 2 bytes PROTOCOL FIELD 64 Kbytes* 2 OR 4 bytes NEXT PACKET 1 byte
0x7E
DATA
CRC FIELD
0x7E
COMPRESSED PPP PACKET PACKET 1 byte 2 bytes PROTOCOL FIELD 64 Kbytes* 2 OR 4 bytes NEXT PACKET 1 byte
0x7E
DATA
CRC FIELD
0x7E
5-9642 (F)
* TDAT042G5 is verified to handle packets of up to 64 Kbytes. Larger packets may be processed, but no upper bound or packet size has been determined. Packets of less than 4 bytes are discarded by the DE.
Figure 16. Uncompressed and Compressed PPP Packets Each channel has a 16-bit register, PPP_Rx_CHK_CH [0--3][15:0] (addresses 0x10FC--0x10FF), that can be provisioned. If the header bytes do not match and payload control bit 7 = 0, the entire PPP packet is discarded for a given channel. Otherwise, if the header bytes do not match and payload control bit 7 = 1, the PPP packet is marked as bad and not discarded for a given channel. If payload control bit 6 = 0, the header is stripped, provided it matches a provisionable value; otherwise, it is left on for a given channel.
Agere Systems Inc.
75
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Data Engine (DE) Block (continued)
Receive Data Engine (continued) The bad packet counting is based upon the following criteria:
I
Header Fields. The PPP mismatched header counter, PM_MHC_[0--3][27:0] (addresses 0x1118--0x111F), counts for PPP packets with various header errors/mismatches as provisioned in the registers. CRC Field. The CRC bad packet counter, PM_BPC_n (n = 0, 1, 2, 3), increments if a CRC error is found in channel n.
I
Each PPP packet not counted as a bad packet in PM_MHC_n (n = 0, 1, 2, 3) counter or PM_BPC_n counter increments the PPP good packet counter, PM_GPC_n (n = 0, 1, 2, 3), for channel n. (See register descriptions, page 241.) Note that each channel only has a single pair of good and bad packet counters. Transmit Data Engine ATM Cell Inserter. The ATM cell inserter provides X43 or X31 scrambling of the payload for transport of ATM cells over SONET. X31 scrambling is suitable for the transport of ATM cells over fiber where bit-level cell delineation is required. The state diagram for the X31 scrambler is shown in Figure 14, page72. The ATM cell inserter will generate idle cells/bytes to fill the SONET/SDH payload when cells/packets are not available in the transmit direction FIFO of the UTOPIA block. For ATM cells, the GFC, PTI, and CLP fields of the idle cell header and the idle cell payload are provisionable via software registers. The idle generator generates idle cells/bytes to fill the SONET/SDH payload when cells/packets are not available in the transmit FIFO. Idle cell HCS is automatically calculated and inserted. Header Check Sequence (HCS) Generator. The HCS generator performs a CRC-8 calculation over the first four header octets of the ATM cell. The generator inserts the result into the fifth octet of the ATM header. SDL Frame Inserter. The SDL inserter performs SDL frame generation and X48 scrambling of the payload field. An optional CRC-16/32 field can be attached (SDL-CRC mode) and is calculated over the payload. The SDL inserter also periodically transmits scrambler state updates through a special 6-byte message. The time between scrambler state updates can be provisioned by software using register SDLFI_INT (see register description, page 250). The packet length header of scrambler state updates is the 16-bit word, 0x0001. Special A and B messages can be software-provisioned to send link layer 1 messages to downstream hardware. The packet length headers for the special A and B messages are 0x0002 and 0x0003, respectively.
76
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Data Engine (DE) Block (continued)
Transmit Data Engine (continued) Prescrambler. The prescrambler block optionally scrambles the payload using a self-synchronizing scrambler with a generator polynomial of 1 + x43 for HDLC and PPP packets. For HDLC frames, the entire frame, including header and trailer, is scrambled; however, HDLC flags are not scrambled. The scrambler may be disabled through the use of a software register. This scrambler removes excessive 0x7D and 0x7E bytes. For ATM cell and SDL packet traffic, this block is not used. (By randomizing the data, the scrambler prevents malicious use of the channel due to escaping 7D and 7E sequences.) CRC-16/-32 Generator. An optional CRC-16/-32 generator on the whole packet frame can be performed. The generating polynomial for CRC-16 is 1+ x5 + x12 + x16. The generating polynomial for CRC-32 is 1+ x + x2 + x4 + x5 + x7 + x8 + x10 + x11 + x12 + x16 + x22 + x23 + x26 + x32. HDLC Inserter. The HDLC framer provides frame check sequence (FCS) generation and insertion using either the CRC-ITU or CRC-32 generation polynomials. After optional CRC generation, the HDLC framer performs control escape (0x7D) stuffing, flag character (0x7E) or abort character (0x7D7E) insertion, and dry mode insertion (0x7D20, where the last two bytes (the 20 bytes of the default value of 0x7D20) are provisionable). Postscrambler. The postscrambler block optionally scrambles the payload using a self-synchronizing scrambler with a generator polynomial of 1 + x43 for HDLC and PPP packets, in accordance with RFC1619. For HDLC and PPP packets, the entire frame, including header and trailer, is scrambled. The scrambler may be disabled through the use of a software register. For ATM cell and SDL packet traffic, this block is not used.* PPP Header Attach. The PPP attach function inserts the provisionable 4-byte PPP header if payload control bit 7 = 1 (addresses 0x10E0--0x10E3). The first and second bytes are set to 0xFF03, and the third and fourth bytes are set to a value defined by a software register in PPP_Tx_CHAN[0--3] (see register descriptions, page 234). If payload control bit 7 = 0 (addresses 0x10E0--0x10E3) (compressed PPP header mode), only the two provisionable bytes defined by the software register PPP_Tx_CHAN[0--3] can be attached. Note that there is only one software register-defined protocol value for each channel. The PPP attach function provides good packet count on a per-channel basis through four 28-bit counters, PM_GPC_TX_[0--3] [27:0] (addresses 0x1128--112F).
* The ATM and SDL framer inserters have their own dedicated scramblers.
Agere Systems Inc.
77
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Data Engine (DE) Block (continued)
Transmit Data Engine (continued) Tx Sequencer. The transmit sequencer maps logical channels into SONET frames, and must be provisioned properly for correct operation. The appropriate time slots must be provisioned for the rate of the payload expected for each channel. This is done via the registers Tx_TS[1--12] (see register descriptions, page 215). TDAT042G5 provides 12 time slots and four channels to define how data is mapped into the 48 synchronous transport signals (STS-1) of an STS-48 frame or into the 12/3 STS signals of an STS-12/3 SONET frame. Figure 17 illustrates the mapping of the 48 STS-1 signals into an STS-48 signal and their assigned time slots. Each STS-1 block in the figure represents a byte of data for the specific STS-1 signal. The STS signals within the 12 time slots are ordered such that the SONET multiplexing requirements of lower rate signals into higher rate signals are satisfied. A value of 0x4 indicates that valid data is contained in the specific byte (STS) and the data is being received/transmitted from/to channel 0.
12 39 42 45 48 11 27 30 33 36 10 15 18 21 24 9 3 6 9 12 8 38 41 44 47 7 26 29 32 35 6 14 17 20 23 5 2 5 8 11 4 37 40 43 46 3 25 28 31 34 2 13 16 19 22 1 1 4 7 10 TIME-SLOT NUMBER
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
0x4 0x4 0x4 0x4
TX_TS[12--1][15:12] TX_TS[12--1][11:8] TX_TS[12--1][7:4] TX_TS[12--1][3:0] CONFIGURE SIMILARLY FOR RX SEQUENCER REGISTER
5-7936(F)r.3
0 x 4 PAYLOAD LOCATIONS VALID AND DIRECTED TO CHANNEL 0
Figure 17. Example of Tx/Rx Sequencer Configuration: STS-48c into Single OC-48 Signal
78
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Data Engine (DE) Block (continued)
Transmit Data Engine (continued) Figure 18 illustrates the configuration of the time-slot registers for four independent STS-12 signals. In this case, there are 12 STS-1 signals that comprise each STS-12 signal.
12 12a 12b 12c 12d 11 9a 9b 9c 9d 10 6a 6b 6c 6d 9 3a 3b 3c 3d 8 11a 11b 11c 11d 7 8a 8b 8c 8d 6 5a 5b 5c 5d 5 2a 2b 2c 2d 4 10a 10b 10c 10d 3 7a 7b 7c 7d 2 4a 4b 4c 4d 1 1a 1b 1c 1d TIME-SLOT NUMBER
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
TX_TS[12--1][15:12] TX_TS[12--1][11:8] TX_TS[12--1][7:4] TX_TS[12--1][3:0] CONFIGURE SIMILARLY FOR RX SEQUENCER REGISTER
5-7937(F)r.3
0x4 0x5 0x6 0x7
PAYLOAD VALID TO CHANNEL 0 PAYLOAD VALID TO CHANNEL 1 PAYLOAD VALID TO CHANNEL 2 PAYLOAD VALID TO CHANNEL 3
Figure 18. Example of Tx/Rx Sequencer Configuration: 4xSTS-12c into Four Independent OC-12 Signals
Agere Systems Inc.
79
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Data Engine (DE) Block (continued)
Transmit Data Engine (continued) The multiplexing rules of SONET are illustrated in Figure 19, and are shown for the case of two-stage byte interleaving of 12 STS-1 signals into an STS-12 signal. The values provisioned in the time-slot registers should obey the SONET multiplexing rules. In Figure 18, time slots 1 through 12 of channel A represent the interleaved bytes of the multiplexed STS-12 signal being received/transmitted in logical channel 0 (0x4). Channels B, C, and D are configured similarly; however, data is being received/transmitted from logical channels 1, 2, and 3, respectively.
STS# 1 2 3 4 5 6 7 8 9 10 11 12
5-8387(F)
3:1
3
2
1
3:1
6
5
4
12TH BYTE
1ST BYTE
12
9
6
3
11
8
5
2
10
7
4
1
3:1
9
8
7
3:1
12
11
10
Figure 19. SONET Multiplexing: 2-Stage Byte Interleaving Example
80
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Data Engine (DE) Block (continued)
Transmit Data Engine (continued) Figure 20 illustrates the configuration of the time-slot registers for four independent STS-3 signals. In this case, there are three STS-1 signals that comprise each STS-3 signal. Since there are 12 time slots and only three are actually required, the values in time slots 4--12 can be repetitively configured as shown in the figure or can be configured as invalid, i.e., 0x0, 0x1, 0x2, and 0x3 for channels A, B, C, and D, respectively.
12 3a 3b 3c 3d 11 2a 2b 2c 2d 10 1a 1b 1c 1d 9 3a 3b 3c 3d 8 2a 2b 2c 2d 7 1a 1b 1c 1d 6 3a 3b 3c 3d 5 2a 2b 2c 2d 4 1a 1b 1c 1d 3 3a 3b 3c 3d 2 2a 2b 2c 2d 1 1a 1b 1c 1d TIME-SLOT NUMBER
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
0x4 0x5 0x6 0x7
TX_TS[12--1][15:12] TX_TS[12--1][11:8] TX_TS[12--1][7:4] TX_TS[12--1][3:0] CONFIGURE SIMILARLY FOR RX SEQUENCER REGISTER
5-7937(F).ar2
0x4 0x5 0x6 0x7
PAYLOAD VALID TO CHANNEL 0 PAYLOAD VALID TO CHANNEL 1 PAYLOAD VALID TO CHANNEL 2 PAYLOAD VALID TO CHANNEL 3
Figure 20. Example of Tx/Rx Sequencer Configuration: 4xSTS-3c into Four Independent OC-3 Signals Performance Monitoring This block contains several cell/packet counters for receive/transmit data traffic. Two 28-bit saturating counters count the number of good packets/cells that are sent out and received by the enhanced UTOPIA interface. There are 28-bit counters used to count the number of corrected ATM HCS single bit errors, HDLC invalid sequences, and SDL corrected headers. Also, 28-bit counters are used to count the number of uncorrectable HCS errored ATM cells (discarded cells), HDLC short packets, SDL errored headers, packets with bad CRC checks, and mismatched PPP headers. These counters are operated in latch and clear mode (using PMRST) to ensure GR-256 standards compliance. It is intended that these counters be polled at least once per second so that no error events are missed.
Agere Systems Inc.
81
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
Data Engine (DE) Block (continued)
Over-Fiber Modes In addition to the support of the normal SONET/SDH modes for different payload types such as HDLC, PPP, ATM (X43 or X31), and SDL as shown in Figure 2 on pa ge45, this device is capable of supporting the over-fiber modes for two payload types, SDL or ATM (X31). In the over-fiber mode, a 3% payload increase can be realized because the data stream contains no SONET/SDH overhead bytes. In the over-fiber modes, it is possible to utilize the whole bandwidth (155 Mbits/s for OC-3, 622 Mbits/s for OC-12, or 2.5 Gbits/s for OC-48) of the optical fiber for SDL packets or ATM cells. As can be seen in Figure 21, for over-fiber modes the device is provisioned as follows:
I
The line termination (OHP) and path termination (PT) blocks of the device need to be provisioned in the passthrough mode. The payload termination (DE) block needs to be set to the bit synchronization mode in the payload control register. The transparent mode in the transmit and receive sequencers (addresses 0x102E and 0x102F; see register description, page 223). Bit 12 of the mode register (address 0x0010) needs to be set to 0 so that the received clock drives the entire receive data path. In this way, there is no need to cross the clock domain boundary. As a result, only a single channel is allowed for OC-3, OC-12, or OC-48 when the device is operated in the over-fiber modes. In contrast, the device is capable of supporting four OC-3/OC-12 channels or one OC-8 channel in the SONET/SDH modes.
I
I
I
LINE PATH TERMINATION TERMINATION
PAYLOAD TERMINATION
PACKET/CELL PROCESSOR -ENCAPSULATION -SCRAMBLING -CRC GENERATION
PASSTHROUGH LINE INTERFACE BLOCK
PASSTHROUGH
SINGLE OC-48 SINGLE OC-12 SINGLE OC-3
ENHANCED UTOPIA I/O PACKET/CELL PROCESSOR -BIT SYNC -DECAPSULATION -UNSCRAMBLING -CRC VERIFICATION
PASSTHROUGH
PASSTHROUGH
CONTROL
P INTERFACE
5-6680(F).cr.1
Figure 21. TDAT042G5 Over-Fiber Modes: SDL, ATM (X31)
82
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
Data Engine (DE) Block (continued)
Transparent Payload Mode The transparent payload mode in the payload termination data engine (DE) block is one of seven basic payload type modes in the payload control registers and allows data to pass directly through the DE. In this mode, no framing is done on the data, and the data in the SONET frame is treated as raw data. The transparent payload mode basically disables all the functions of the framers. In contrast, the transparent mode of the sequencer (over-fiber mode) disables the conversion function of the sequencer between the SONET/SDH framing structure and the logical channel structure. In the transparent payload mode, the data engine processes the entire payload as a single packet with no J1 byte or other POH. An RxSOP is generated on the UTOPIA interface on the first byte following the J1 byte. The last byte of payload occurs at an RxEOP. If the device is set in both the transparent payload mode in the payload control registers and the transparent mode in the sequencer, then the whole SONET/SDH frame (overhead bytes will be overwritten with zeros) will appear at the receive UTOPIA interface as one packet. At the transmit UTOPIA side, the whole SONET/SDH frame needs to be supplied. Transparent Receive Mode Control. In receiving from the line, provisioning must specify the time slot and SONET frame byte location where the last byte in the packet will occur. The following registers are used to indicate this location.
I
Rx_CHCD_FM (address 0x1030; see register description, page 224) specifies the time slot where the last byte of a packet exists in channels C and D. Rx_CHAB_FM (address 0x1031; see register description, page 224) specifies the time slot where the last byte of a packet exists in channels A and B. Rx_CELLA_FM (address 0x1032), Rx_CELLB_FM (address 0x1033), Rx_CELLC_FM (address 0x1034), and Rx_CELLD_FM (address 0x1035) specify in which SONET location (0 to 809) the last byte in a packet exists in channel A, B, C, or D, respectively. (See register descriptions, page 225.) In the case where the location of the last byte in the frame is not known, the last byte should be provisioned for location 809 and time slot 12, and external UTOPIA hardware must perform packet delineation on the data stream.
I
I
Transparent Transmit Mode Control. In transmitting to the line, provisioning must specify the time slot and SONET frame alignment. This is done through Tx_TRANS_CTRL (address 0x102F; see register description, page 223) used in conjunction with Tx_TS[1--12] (addresses 0x1016--0x1021; see register descriptions, page 215).
Agere Systems Inc.
83
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
UTOPIA (UT) Interface Block
The UT core provides buffering and UTOPIA interface functionality. This enhanced UTOPIA interface will pass U2, U2+, U3, and U3+ protocols. In the receive direction, data is buffered from the line side, and sent out of the device via a UTOPIA/packet-over-SONET-PHY interface. In the transmit direction, data is received by the device via a UTOPIA/packet-over-SONET-PHY interface, and buffered before being sent to the line side. Data that is sent or received can be either packet or ATM traffic, and is configurable on a per-channel basis. The UTOPIA slave interface is designed to accommodate back-to-back ATM cell and packet data transfers in point-to-point or multi-PHY modes. Level-2 physical interfaces (transmit and receive) support four logical data channels as shown in Figure 22. Each of these interfaces is independently configurable for cell or packet transfers, and can support up to STS-12/STM-4 bandwidth. Optionally, two of the interfaces, specifically A and B, can be grouped together to support a 32-bit UTOPIA level-3 interface supporting up to STS-48/STM-16 of bandwidth. The aggregate traffic that can be carried over these interfaces is limited to STS-48/STM-16 bandwidth. In addition to operating as separate point-to-point streams, MPHY capabilities for up to four channels can be provided from the A interface in either 16-bit or 32-bit modes. For example, when operating as a 32-bit interface, the A interface can support either a single STS-48c channel or four STS-12c channels. As a 16-bit interface, the MPHY interface can support either a single STS-12c channel or four STS-3c channels. Since each channel can be configured independently, each one can carry different traffic types at different rates, provided that the capabilities of the active interfaces and the data engine are not exceeded. There are two basic data paths: receive side, defined to be data going from the line side to the UTOPIA side, and transmit side, defined to be data going from the UTOPIA side to the line side as shown in Figure 22.
EGRESS SIDE INTERFACE A INTERFACE B Tx INTERFACE C INTERFACE D LINE SIDE UTOPIA INTERFACE INTERNAL CONTROL BUS
LOOPBACKS
INTERFACE A INTERFACE B Rx MPHY INTERFACE C INTERFACE D
INGRESS SIDE SOFTWARE REGISTERS UTOPIA 2/3 INTERFACE NOTE: UTOPIA 32-bit MODE COMBINES CHANNELS A & B IN BOTH DIRECTIONS (Tx & Rx) 5-7056(F)r.5
Note: For MPHY support, channels are mapped to interface A only.
Figure 22. UT Block Diagram
84
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
Enhanced refers to the extensions that have been added to support packet transfers. These extensions are indications of the following: (1) an end of packet (TxEOP/RxEOP), (2) the byte on which packet ends in last word (TxSZ/ RxSZ), and (3) the signal to abort a packet early (TxERR/RxERR). An abort occurs, for example, if the check sum at the end of a packet is bad, or the end of a packet is reached prematurely. If the receive FIFO overflows because the master cannot process packet data fast enough, an RxERR will also be generated. UTOPIA Loopbacks TDAT042G5 can be placed in loopback on a channel-by-channel basis. When the TDAT042G5 is placed in far-end loopback (FELB), data from the DE is sent to and processed by the UTOPIA interface. Instead of sending it to the UTOPIA master, however, the data is sent to the corresponding egress channel and back to the line interface. When the TDAT042G5 is placed in near-end loopback (NELB), data from the egress channel is transferred to the corresponding ingress channel, instead of the DE. This data is then processed by the ingress channel and is returned to the UTOPIA master. UTOPIA Modes Each UTOPIA interface mode is capable of supporting various types of traffic with different bandwidth capabilities as summarized in Table 24. In a point-to-point operational mode, any interface can be configured independently in any of the defined modes (e.g., channel A passes ATM cells using STS-12c, channel B passes packets, etc.). It should be noted that the U3 or U3+ (32-bit mode) can only be supported by overloading channel A and B interface pins. Only the control signals from channel A are used. The channel B size and data bits are combined with the channel A size and data bits to form the 2-bit size and the 32-bit data words. When 32-bit mode is selected, channels B, C, and D must be configured to be idle (so that channel B will be under the control of channel A in 32-bit mode). Multichannel multi-PHY (MPHY) capabilities are only supported on interface A by grouping the internal FIFOs and data paths of channels B, C, and D as needed. This operational mode is described in a later section. Table 24. UTOPIA Traffic Types UTOPIA Name Interface Width 16 bits 16 bits 8 bits 8 bits 32 bits 32 bits Maximum Speed 52 MHz* 52 MHz* 104 MHz 104 MHz 104 MHz 104 MHz Aggregate Bandwidth 622 Mbits/s (STS-12) 622 Mbits/s (STS-12) 622 Mbits/s (STS-12) 622 Mbits/s (STS-12) 2.5 Gbits/s (STS-48) 2.5 Gbits/s (STS-48) Traffic Type Maximum Number of Interfaces 4 4 4 4 1 1
U2 U2+ U3, 8-bit mode U3+, 8-bit mode U3, 32-bit mode U3+, 32-bit mode
ATM cells only ATM cells/packets ATM cells only ATM cells/packets ATM cells only ATM cells/packets
* Maximum speed may be exceeded if nonstandard load conditions are used and the clock is sourced. See CLOCK_MODE_Rx [A--D] (registers 0x020F, 0x0213, 0x0217, 0x021B), pages 158--159 for details.
Agere Systems Inc.
85
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
UTOPIA ATM Cell Processing The UTOPIA block will process ATM packets of 52, 53, 54, or 56 bytes. The standard 53-byte ATM cell structure is shown in Table 25. Table 25. Standard 53-byte ATM Cell Structure H1 8 bits H2 8 bits H3 8 bits H4 8 bits H5 (HEC) 8 bits 53 bytes D1 8 bits D2 8 bits ... D48 8 bits
In the receive path, TDAT042G5 automatically calculates the HEC (byte 5) and overwrites this byte of the ATM cell. It is therefore possible to transfer only 52-byte packets through the UTOPIA I/O to increase interface efficiency. This mode will be referred to as the 52-byte mode. The 52-byte or 53-byte ATM mode is provisioned through ATM_SIZE_Rx[A--D] (bit 4 of registers 0x020F, 0x0213, 0x0217, and 0x021B) and ATM_SIZE_Tx[A--D] (bit 4 of registers 0x0210, 0x0214, 0x0218, and 0x021C). U2 Modes. For U2 and U2+, both the 52-byte and 53-byte, 16-bit UTOPIA interface modes are supported for ATM cells as shown in Table 26. Table 26. Bus Format for 16-bit Interface 53-byte Option TxD[15:8] or RxD[15:8] H1 H3 H5 (HEC) D1 D3 TxD[7:0] or RxD[7:0] H2 H4 H5 (UDF*) D2 D4 52-byte Option (HEC Omitted) TxD[15:8] or RxD[15:8] H1 H3 D1 D3 . . . D47 TxD[7:0] or RxD[7:0] H2 H4 D2 D4 . . . D48
. . . D47
* UDF refers to the undefined H5 byte. This option is also called the 54-byte mode.
. . . D48
86
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
UTOPIA ATM Cell Processing (continued) U3 Modes. For U3 and U3+, both the 52-byte and 53-byte, and either 8-bit or 32-bit modes are supported for ATM cells as shown below. For the case of an 8-bit UTOPIA interface, data is placed on the UTOPIA port as shown in Table 27. Table 27. Bus Format for 8-bit Interface 53-byte Option TxD[15:8] or RxD[15:8] H1 H2 H3 H4 H5 (HEC) D1 D2 . . . D48 TxD[7:0] or RxD[7:0] Not used Not used Not used Not used Not used Not used Not used . . . Not used 52-byte Option (HEC Omitted) TxD[15:8] or RxD[15:8] H1 H2 H3 H4 D1 D2 . . . D48 TxD[7:0] or RxD[7:0] Not used Not used Not used Not used Not used Not used . . . Not used
For the case of a 32-bit UTOPIA interface, parallel data is placed on the UTOPIA port as shown in Table 28. Table 28. Bus Format for 32-bit Interface 53-byte Option TxD[31:24] or RxD[31:24] H1 H5 (HEC) D1 D5 TxD[23:16] or RxD[23:16] H2 H5-UDF1 D2 D6 TxD[15:8] or RxD[15:8] H3 H5-UDF2 D3 D7 TxD[7:0] or RxD[7:0] H4 H5-UDF3 D4 D8 52-byte Option (HEC Omitted) TxD[31:24] or RxD[31:24] H1 D1 D5 . . . D45 TxD[23:16] or RxD[23:16] H2 D2 D6 . . . D46 TxD[15:8] or RxD[15:8] H3 D3 D7 . . . D47 TxD[7:0] or RxD[7:0] H4 D4 D8 . . . D48
. . . D45
. . . D46
. . . D47
. . . D48
* UDF refers to undefined H5 bytes. This option is also called the 56-byte mode.
Agere Systems Inc.
87
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
UT Clocking TDAT042G5 is compliant with the U2 standard1 and several versions of the proposed U3 specification2--6 as a UT slave device. The U2 standard and proposed U3 specifications define the slave device transmit path (egress) clock as an input clock. For the U2 case, the slave transmit path clock is generated by the UT master device. For the current version of the U3 specification6, the transmit path clock for both slave and master devices is generated by the same external clock source7. The U2 standard and current U3 proposed specification6 define the slave device receive path (ingress) clock as an input clock. In the U2 case, the slave device receive path (ingress) clock is generated by the UT master device. In the U3 case, the receive clock for both the master and slave devices is generated by same external clock source. Previous proposed versions of the U3 specification provided for the case where the receive path clock could be generated by the slave device. TDAT042G5 can be provisioned in the configuration where it sources the receive path (ingress) clock. The timing specification for the UT clock is given in the UTOPIA Interface Timing section, pages 268--270. UT Transmit Path (Egress) Clock In all UTOPIA modes, the transmit path clock must be provided to TxCLK[D:A] pins as described in Table 5, page page 31. UT Receive Path (Ingress) Clock The receive path clock RxCLK[D:A] pins can be provisioned to be either clock inputs or outputs as described in Table 5, page 38. Provisioning as either an input or output is done on a per-channel basis through registers 0x020F, 0x0213, 0x0217, and 0x021B (CLOCK_MODE_Rx). In the U2 mode, RxCLK is always provisioned to be an input. To meet the latest proposed U3 specification, RxCLK is provisioned as an input. To meet special UT requirements, RxCLK may be provisioned to be a clock output signal. When provisioned as a clock output, the RxCLK[D:A] is derived from the corresponding TxCLK[D:A] input. For RxCLK rates greater than 52 MHz, RxCLK must be provisioned to be an output.
1. UTOPIA Level 2, Version 1.0, AF-PHY-0039.000, June 1995. 2. UTOPIA Level 3 Baseline Text, UL3-01.04, February 1999. 3. UTOPIA Level 3 Living List, UL3-01.04, February 1999. 4. UTOPIA Level 3 Living List, LTD-PHY-UL3-01.05, April 1999. 5. UTOPIA Level 3, STR-PHY-UL3-01.00, July 1999. 6.UTOPIA Level 3, AF-PHY-136.00, October 1999. 7.Previous proposed versions of the U3 specification were similar to the U2 standard where the slave device transmit clock was gen erated by the UT master device.
88
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
UT Receive Input Path (Ingress) The UTOPIA Rx interface is designed to accommodate ATM cells as well as packet traffic. While the standard UTOPIA interface transmits and receives ATM cells, this interface has been enhanced to carry non-ATM traffic. The interfaces supported include the following: UTOPIA Level 2 (U2), enhanced UTOPIA Level 2 (U2+), UTOPIA Level 3 (U3) in 8-bit mode or 32-bit mode, and enhanced UTOPIA Level 3 (U3+) in 8-bit mode or 32-bit mode. In the receive direction, data arrives and is sent to one of four channels (A through D). Each channel buffers data independently and, when sufficient data has been stored in its FIFO, sends the data out of the channel via its UTOPIA interface. There are four paths inside the UT core, corresponding to one path per channel. These paths are labeled A to D. When using 32-bit modes, only the control signals of interface A and size signals of interfaces A and B are used. Note: 32-bit mode is supported using channels A and B only. When 32-bit mode is selected, channels B, C, and D must be configured to be idle (channel B will be under the control of channel A in 32-bit mode). In normal mode, data arrives into the ingress channel, and control and data information are written into the FIFO. The data is extracted from the FIFO, and word-aligned on the first byte of data. After word alignment, the data is sent out of the device via the UTOPIA interface. Note: The start of packets must be word-aligned, and there can only be one packet per word (required by the definition of the UTOPIA interface). FIFO. The 256-byte UTOPIA Rx FIFO is responsible for buffering data from the DE block to be sent to the UTOPIA interface. The FIFO accommodates four ATM cells or 256 bytes of packet data. In STS-48/STM-16, only one 256-byte FIFO is used. The FIFO is required to manage the asynchronous nature of the UTOPIA interface. Overflow will only occur if the master device connected to the UTOPIA interface is having congestion problems. When overflow occurs and head of line discard is performed, it is possible that part of one packet may be appended to another (if, for example, an end of packet is discarded along with the data at the head of the FIFO). Because this is not a desirable operation, it is necessary to discard until the start of the next packet is observed. Data is read from the FIFO when there is sufficient data in the FIFO. Upon overflow, the RxERR and RxEOP signals are asserted to indicate to the master the corruption of the current packet. Sufficient data is defined to be a minimum amount of data in the FIFO (a programmable threshold, low watermark), or at least one end of packet stored in the FIFO. If the FIFO overflows, the block is responsible for discarding data until the next start of packet. When this occurs, an alarm is raised. Underflow in the receive direction can occur when there is no data, or if only part of a packet has arrived and has been transmitted, and is normal behavior.
Agere Systems Inc.
89
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
UT Receive Input Path (Ingress) (continued) Receive Cell/Packet Available (RxPA). This signal indicates when the TDAT042G5 receive FIFO can send data to the master device. The RxPA[D:A] signal behavior depends on the provisioned low watermark in the UTOPIA interface.
I
One-Cycle Delay Mode. This mode follows the UTOPIA Level 2 Standard. The RxPA response occurs one cycle after the address is polled. RxENB is asserted to activate the selected PHY. RxDATA and RxSOP are output one cycle after RxENB is sampled active by the PHY device. Two-Cycle Delay Mode. This mode follows the UTOPIA Level 3 baselined text*. The RxPA response occurs two cycles after the address is polled. RxENB is asserted to activate the selected PHY. RxDATA and RxSOP are output two cycles after RxENB is sampled active by the PHY device. RxPA[D:A] Assertion. RxPA[D:A] goes high (is asserted) when the amount of data in the receive FIFO has reached or exceeded the low watermark or there is end of packet (EOP) resident in the FIFO. RxPA[D:A] Deassertion. In ATM mode, the RxPA[D:A] signal goes low (is deasserted) when the FIFO has less than the low threshold amount of data and there is no EOP inside the FIFO (i.e., part of anATM cell). Once the last byte of the current cell is transmitted, and if the amount of data within the FIFO is still less than the low threshold, RxPA[D:A] is deasserted. In packet mode, the RxPA[D:A] signal goes low (is deasserted) when the FIFO has less than the low threshold amount of data and there is no EOP inside the FIFO. Once the data transfer begins (since the amount of data has reached or exceeded the low watermark), and if there is no EOP below the low threshold (i.e., a long packet), the RxPA signal is deasserted when the FIFO is drained by the UTOPIA master device. In this case, the master must closely monitor the RxPA[D:A] signals and use these signals as data valid indicators to ensure that bad data is not read from the TDAT042G5. TDAT042G5 will deassert the RxPA[D:A] signal immediately when the FIFO is drained.
I
I
I
I
Data Transfer. A TDAT042G5 ingress channel sends data when it has asserted RxPA[D:A] and the master device requests data (via RxENB[D:A]). InATM mode, if the master device requests data using RxENB[D:A] and if the TDAT042G5 has less than the low watermark amount of data to send and there is no end of cell in the FIFO (RxPA[D:A] is deasserted), then the TDAT042G5 UTOPIA interface will send out data that should be ignored by the master, i.e., it does not send data from its internal FIFO. In ATM mode, once an ATM cell transfer starts, the Tx or Rx side must complete the transfer. If the transfer is not completed, then the cell will be corrupted. The transfer continues until either (1) the end of cell is reached, when the end of cell exists below the low watermark, or (2) the end of the FIFO is reached. If the end of the FIFO is reached, no underflow is flagged on the receive side. In ATM mode, the low watermark should be set so that at least one entire cell is in the FIFO prior to asserting RxPA[D:A]. In packet mode, once the data transfer begins, the RxPA[D:A] signal will remain asserted until the FIFO is drained if there is no EOP below the low watermark. During the time RxPA[D:A] is asserted, valid data is being transferred. RxPA[D:A] is updated on the rising edge of RxCLK[D:A]. In 32-bit mode, only the RxPA[A] pin of port A is used to indicate the packet/cell available status.
I
MPHY Support. When the RxPA signals are used for MPHY direct status, the corresponding RxCLK[B, C, and/or D] must be provided. This clock will be the same as RxCLK[A].
* ATM Forum Technical Committee, UTOPIA Level 3, STR-PHY-UL3-01.00, July 1999.
90
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
UT Receive Input Path (Ingress) (continued) Figure 23 illustrates the receive-side interface handshaking when operating in point-to-point mode with the RxPA response provisioned to be a single cycle. In two-cycle mode, the RxSOP, RxDATA, and RxPA signals are delayed an additional cycle. In the figure, the master device initiates the transfer after observing an asserted packet available for the channel. The TDAT042G5 samples RxENB low on the first cycle and then asserts RxSOP/C and RxDATA on the second cycle. RxDATA is sampled on the rising edge of the second cycle by the master device. Figure 24 illustrates receive-side interface handshaking when operating in two-cycle mode. When operating in U3+ mode, two-cycle mode must be used. In this example, the master stops transfer in the middle of the packet. Data with value c is valid on the cycle that RxENB goes inactive, and when RxENB returns, data is again valid on the first cycle after the slave observes an active RxENB (data value d). The packet transfer is complete when the slave asserts the RxEOP signal. If an error occurs in the packet, then the RxERR signal is asserted simultaneously with the RxEOP. RxERR is ignored if it is not asserted when RxEOP is active.
1 RxCLK 2 3 4 5 6 7 8 9 10 11 12
RxPA
RxENB
RxSOP/C
RxDATA[15:0]
a
b
c
d
e
RxEOP
RxERR
5-7450(F).ar.2
Figure 23. Receive-Side Interface Handshaking in Point-to-Point, Single Cycle Mode The packet transfer is complete when the slave asserts the RxEOP signal. If an error occurs in the packet, then the RxERR signal is asserted simultaneously with the RxEOP. RxERR is ignored if it is not asserted when RxEOP is active.
Agere Systems Inc.
91
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
UT Receive Input Path (Ingress) (continued)
1 RxCLK 2 3 4 5 6 7 8 9 10 11 12
RxPA
RxENB
RxSOP/C
RxDATA[15:0]
a
b
c
d
e
RxEOP
RxERR
5-7450(F)br.1
Figure 24. Receive-Side Interface Handshaking in Point-to-Point, Two-Cycle Mode
92
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
UT Transmit Input Path (Egress) In the transmit direction, data arrives from the various UTOPIA interfaces, and is stored in a 256-byte FIFO, one per channel. After sufficient data has been stored into the FIFO, it is made available to be sent to the DE. Like the UTOPIA Rx interface, the UTOPIA Tx interface is designed to accommodate ATM cells as well as packet traffic. While the traditional UTOPIA interface only transfers ATM cells, this interface has been enhanced to carry packet traffic. The interfaces supported include the following: UTOPIA Level 2 (U2), enhanced UTOPIA Level 2 (U2+), UTOPIA Level 3 (U3) in 4 x 8-bit mode or 32-bit mode, and enhanced UTOPIA Level 3 (U3+) in 4 x 8-bit mode or 32-bit mode. The UTOPIA Tx side can indicate to the ATM side to suspend the transfer, by deasserting TxPA, when necessary. When the amount of data in the FIFO exceeds its programmable high watermark, it deasserts TxPA. This signal causes the deassertion of TxPA on the next clock. At this point, the ATM side knows that the UTOPIA Tx block can only accept a limited number of words, after which it will overflow. In this case, the ATM device must not exceed writing this limited number of words before suspending the transfer. Transfer is resumed once again when the FIFO falls below the high watermark. When transferring ATM cells, TxPA must be deasserted four clocks before the end of cell, or else it must be prepared to accept an entire new cell. When transferring ATM cells, deasserting TxPA does not immediately suspend the transfer of the current cell because the entire cell can be transmitted without interruption. Transmit Cell/Packet Available (TxPA). This signal indicates when the TDAT042G5 transmit FIFO can accept data from the master device. If the FIFO is empty or more than the provisioned space is available in the FIFO, TxPA[D:A] is set active.
I
One-Cycle Delay Mode. This mode follows the UTOPIA Level 2 Standard. The TxPA response occurs one cycle after the address is polled. Two-Cycle Delay Mode. This mode follows the UTOPIA Level 3 baselined text*. The TxPA response occurs two cycles after the address is polled. TxPA[D:A] Assertion. The TxPA[D:A] signal behavior relies on the UTOPIA provisionable watermarks. In packet mode, TxPA[D:A] goes high when the amount of data in the FIFO is less than the high watermark setting. In ATM mode, TxPA[D:A] goes high when the FIFO has space to receive a complete ATM cell from the master. (This requires the high threshold to be set appropriately by the user, i.e., set so that an entire cell can be received once TxPA[D:A] goes active.) TxPA[D:A] Deassertion. In packet mode, TxPA[D:A] goes low when the amount of data in the FIFO reaches or exceeds the high watermark. In ATM mode, TxPA[D:A] goes low when there is not enough space in the FIFO to receive an entireATM cell. (This requires the threshold values to be provisioned properly, i.e., set low enough such that when the high watermark is reached, the transmission of the current cell can be completed without overflowing the FIFO). In ATM mode, TxPA[D:A] will be deasserted four cycles before the end of the current cell transfer if the FIFO cannot accept a complete ATM cell on the following transmission. TxPA[D:A] is updated on the rising edge of TxCLK[D:A]. In 32-bit mode, only the TxPA[A] pin of port A is used to indicate the packet/cell available status.
I
I
I
I
MPHY Support. When the TxPA signals are used for multi-PHY (MPHY) direct status, the corresponding TxCLK[B, C, and/or D] must be provided. This clock will be the same as TxCLK[A].
* ATM Forum Technical Committee, UTOPIA Level 3, STR-PHY-UL3-01.00, July 1999.
Agere Systems Inc.
93
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
UT Transmit Input Path (Egress) (continued) FIFO. The UTOPIA Tx FIFO is used to create an elastic store that can buffer bursts of data received via the UTOPIA Tx, faster than can be transmitted out of the path. After the FIFO exceeds a programmable watermark, it indicates to the UTOPIA Tx master to stop sending data. The master can choose to ignore this request causing the risk of an overflow. The FIFO block buffers 256 bytes of cell/packet data. The FIFO accommodates four ATM cells or 256 bytes of packet data. The FIFO is required to manage the asynchronous nature of the UTOPIA interface. Optionally, in the case of FIFO underflow, a 0x7D207D207D20 . . . will be inserted by the data engine into the middle of the packet if dry mode is provisioned and the default dry escape sequence is used (0x7D20, where the last two bytes (the 20 bytes of the default value of 0x7D20) are provisionable). This will be removed at the far end by the device (provided the link is comprised of two devices and both sides of the link support dry mode).
I
FIFO Watermark Threshold. When carrying ATM cell traffic, this threshold, while measured in words, should be set at least one cell's length from end of FIFO. The UTOPIA Tx interface, by definition, must be able to accept an entire ATM cell after the current ATM cell, unless TxPA is deasserted at least four clock cycles before the end of the current cell transfer. When carrying packet traffic, however, the threshold can be set higher, as the UTOPIA Tx interface only needs to accept a limited number of words after deasserting TxPA. The number of words is a programmable value for the sender, and should be assumed to be at least 2 words for the purposes of setting the threshold. FIFO high watermark threshold, EGRESS_WATERMARK_HIGH_[A--D][6:0] (addresses 0x0212, 0x0216, 0x021A, 0x021E), should be set as follows. Table 29. Egress High Watermark Thresholds UTOPIA Mode 8-bit, U3+ 16-bit, U2+ 32-bit, U3+ Maximum Threshold Value 0x3D 0x3B 0x37
Note: The high watermark threshold should be set less than the values in the above table assuming there is no delay between TxPA deassertion and TxENB deassertion. Then the threshold values may be changed to optimize UT egress performance and to avoid FIFO overflow.
94
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
UT Transmit Path (Egress) (continued) Figure 25 illustrates the transmit-side interface handshaking when operating in point-to-point mode with the TxPA response provisioned to be a single cycle. In two-cycle mode, the TxPA signal is delayed an additional cycle. In the figure, the master device initiates the transfer after observing an asserted packet available for the channel by asserting the TxENB signal. The master places data and start of packet on the bus the same cycle as TxENB, and the TDAT042G5 samples the TxSOP and TxDATA on the following clock cycle (rising edge). In this example, the master stops transfer in the middle of the packet. Data with value c is valid on the cycle that TxENB goes inactive, and when TxENB returns, data is again valid on the first cycle (data value d). The packet transfer is complete when the master asserts the TxEOP signal. If an error occurs in the packet, then the TxERR signal is asserted simultaneously with the TxEOP. TxERR is ignored if it is not asserted when TxEOP is active.
1 TxCLK 2 3 4 5 6 7 8 9 10 11 12
TxPA
TxENB
TxSOP/C
TxDATA[15:8]
a
b
c
d
e
f
g
TxEOP
TxERR
5-7457(F).ar.2
Figure 25. Transmit-Side Interface Handshaking in Point-to-Point, Single Cycle Mode
Agere Systems Inc.
95
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
Multi-PHY Support In addition to point-to-point UTOPIA mode, the TDAT042G5, as the slave device, can also be configured to support the polled multi-PHY mode. To operate in multi-PHY mode, channel A must be configured in the polling mode, since the control signals of channel A are used for all channels. Any combination of B, C, or D can be included in the polling group, in which case they provide control information to channel A. Channels B, C, and D also can be configured in any of the UTOPIA modes. In this case, the output is transferred through the channel A interface (channel A and B interfaces for 32-bit mode). Channels not configured for polling can be operated as point-to-point connections. If channel A is in 32-bit polling mode, channel B cannot be in point-to- point mode since its interface is controlled by channel A, while channels C and D may be provisioned as point-to-point connections. Figure 26 shows a multi-PHY mode when all four channels of the UT are in polling mode.
RxPA[A]/RxDATA[A] INGRESS CHANNEL A UTOPIA _PHY_Rx RxENB[A]/RxADDR INGRESS CHANNEL B RxPA[B] UTOPIA _PHY_Rx RxPA[C] UTOPIA _PHY_Rx RxPA[D] UTOPIA _PHY_Rx
INGRESS CHANNEL C
INGRESS CHANNEL D P
TxPA[A] EGRESS CHANNEL A UTOPIA _PHY_Tx TxENB[A]/TxDATA[A]/TxADDR EGRESS CHANNEL B TxPA[B] UTOPIA _PHY_Tx TxPA[C] UTOPIA _PHY_Tx TxPA[D] UTOPIA _PHY_Tx
EGRESS CHANNEL C
EGRESS CHANNEL D
5-7349(F)r.2
Figure 26. Multi-PHY Configuration of All Four Channels Mixed mode polling is also possible. For example, for those channels operated in polling mode, it is legitimate for some of the channels to be in packet mode while others are in ATM mode. However, if one or more of the channels are in packet mode, channel A should be configured as packet mode to activate control signals for packet transfer. Multi-PHY operation can be configured by asserting the polling mode enable bit and Tx/Rx address in the respective port provisioning registers (see port provisioning registers, pages 158--161). Microprocessor provisionable registers in each channel include a polling mode enable bit and 5-bit Rx address or 5-bit Tx address. The value for the Tx and Rx address of an MPHY channel must be identical. Both the Rx and Tx directions have a 5-pin address input to poll and select the appropriate PHY.
96
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
Multi-PHY Support (continued) In 8-bit or 16-bit multi-PHY mode, only the data bus and the control signals (except the RxPA or TxPA signal) of channel A are active for the polled group. RxPA[A] indicates the packet/cell availability of the selected or polled channel. Similarly, TxPA[A] indicates transmit FIFO availability for a selected or polled channel. The remaining RxPA/TxPA signals for the polled channels are activated and indicate instantaneous or direct status of the particular channel. In 32-bit multi-PHY mode, the data bus and size control signals of channel B are also active. TDAT042G5 does not provide a selected packet available (SPA) signal to monitor the status of the current channel sending/receiving data to or from the master. To prevent the FIFOs from running dry or overflowing in the middle of a packet transfer, the user must design the UT TDAT042G5 slave-to-master interface with direct status mode rather than address polling. The direct status of each channel is provided on the associated SPA pin for that channel. In this mode, the user must guarantee that when channels are switched to receive data from a channel other than channel A, they immediately reapply the address of channel A to the address bus after the new channel is selected. The user then gets the direct status SPA signal from channel A. Channels B, C, and D are always directly sent out of the TDAT042G5. In either receive or transmit, when direct status is used in addition to the direct status pin for a given interface, its corresponding interface clock pin must be driven by the clock of the A interface. During the cycle when the selected channel is being changed, the address of the new channel is placed on the address bus. The user must ignore the RxPA response of the initial channel during the expected response time (one or two cycles later, depending on the PA response bit when the address of the newly selected channel was applied). Figure 27 illustrates the transmit interface timing for the case when the direct status of packet available of channels A, B, C, and D is present. In this example, channels A and C indicate they can receive data. When the SPA signal for C is observed, a channel switch is performed by the master by deasserting TxENB and placing the address of channel C on the address bus. On the following cycle, data is placed on the bus along with the start of packet. In this example, the TxPA response is configured for two cycles so that the PA response of address 02 results in the PA of channel C to appear on channel A's output two clock cycles later. Subsequent data sent to the slave will go to channel C (i.e., data values I, J, etc.). When the RxPA signals are used for multi-PHY (MPHY) direct status, the corresponding RxCLK[B, C, and/or D] must be provided. They may be provided via an external UT master, or they may be sourced from the corresponding TxCLK[D:A] pin by using the UT clock source mode (see UT Clocking, page 88).
Agere Systems Inc.
97
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
Multi-PHY Support (continued)
1 TXCLK[A] 2 3 4 5 6 7 8 9 10 11
TXADDR
00
02
00
TXPA[A]
00
00
00
02
00
TXPA[B]
TXPA[C]
TXPA[D]
TXENB[A]
TXSOP/C[A]
HIGH Z
HIGH Z
TXDATA[A][15:0]
A
C
E
G
I
K
M
O
Q
TXDATA[B][15:0]
B
D
F
H
J
L
N
P
R
TXEOP[A]
HIGH Z
HIGH Z
HIGH Z TXSIZE[A, B] 11
HIGH Z
5-7933(F).ar.3
Figure 27. TxPA Two-Cycle Responses of a Multi-PHY for All Four Channels
98
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Functional Description (continued)
UTOPIA (UT) Interface Block (continued)
Multi-PHY Support (continued) The ATM side sends one RxENB (TxENB) signal to channel A for the grouped channels to select a channel which has ATM cells/packets (or room) available. An MPHY channel is selected using the following procedures. 1.The ATM layer polls the RxPA[D:A] (TxPA[D:A]) status of a channel by placing its address on the RxADDR[4:0] (TxADDR[4:0]) lines. 2.In the following cycle, the MPHY channel gives its status by driving RxPA[D:A] (TxPA[D:A]) of channel A. 3.The ATM side selects the MPHY channel by placing the desired MPHY address on the address bus RxADDR[4:0] (TxADDR[4:0]) during this cycle; RxENB[D:A] (TxENB[D:A]) is deasserted. 4.During the next cycle, the ATM side asserts RxENB[D:A] (TxENB[D:A]), and the selection of an MPHY channel is made. Only one MPHY channel at a time is selected for a cell/packet transfer when ATM drives RxENB (TxENB) for channel A from high to low. However, another MPHY channel can be polled for its RxPA (TxPA) status while the selected channel transfers data. Figure 28 shows an example of the single-cycle RxPA response of each channel. In this figure, channels A, B, C, and D have Rx addresses 00, 01, 02, and 03, respectively. RxPA[A] shows the packet availability of all four channels. Channels A and C have available packets to send, and channels B and D do not have packets to send. By driving RxENB[A] low at clock edge 1, the ATM side selects channel A, and packet transfer is started at clock edge 2. The master samples this data at clock edge 3. At clock edge 4, RxPA[C] shows that channel C also has a packet to send, and this is reflected to RxPA[A] at clock edge 5. RxPA[B] and RxPA[D] show the direct status of channels B and D, indicating that they do not have packets to send.
1 RXCLK[A] 2 3 4 5 6 7 8 9 10 11
RXADDR
00
1F
01
1F
02
1F
03
1F
00
1F
01
RXDATA[A] HIGH Z
P1P2
P3P4
P5P6
P7P8
P9P10
P11P12 P13P14 P15P16 P17P18
RXSOP/C[A]
HIGH Z RXEOP[A] HIGH Z
RXSZ[A]
RXENB[A] HIGH Z RXPA[A] 00 HIGH Z 01 HIGH Z 02 HIGH Z 03 HIGH Z 00 HIGH Z
RXPA[B]
RXPA[C]
RXPA[D]
5-7348(F)r.2
Figure 28. RxPA Responses of a Multi-PHY for All Four Channels (PA Response Configured for One Cycle) Agere Systems Inc.
99
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Functional Description (continued)
JTAG (Boundary-Scan) Test Block
The JTAG test block provides an IEEE 1149.1 JTAG controller interface for memory BIST, boundary scan, and 32-bit ID register instructions. Details about JTAG (boundary-scan) functionality and interface timing specifications can be found in MN98-060ASIC-02, HL250C 3.3 Volt 0.25 m CMOS Standard-Cell Library Manual, page 8-1 through page 8-31. The instruction register length is 3 bits. Reset of JTAG Logic There are two events that will reset the JTAG logic:
I I
Pulse or pull the TRST pin signal low with no TCK pin signal present. TRST is pulled high on-chip. The TMS pin signal is driven high for five cycles of TCK. TMS is pulled high on-chip.
TRST can be held high during normal device operation only if TRST is pulled low upon powerup.
Line Interface
LVPECL I/O Termination and Load Specifications
The LVPECL buffers are compatible with the temperature independent ECL 100K levels, but the output levels that are guaranteed are relaxed 30 mV from the actual 100K levels allowing for noise and variations in the power supply and process. All LVPECL output buffers require a terminating resistor. These terminating resistors, which must also be connected to both LVPECLREFHI and LVPECLREFLO, go to a common terminating voltage. All of the terminating resistors used with a chip must be identical precision (1%) resistors. The value of these terminating resistors is usually chosen to match the characteristic impedance of the board. To save on power, a terminating voltage equal to VDDD - 2 V is available in most ECL systems. The minimum value of the terminating resistor that can be used on these bufers is 50 . This is also the standard termination used in most ECL systems. Larger values of resistance will save power, but will also slow down the high-to-low transition of the output, since it is RC limited. if no VDDD - 2 V supply is available, a larger value resistor may be connected directly to GND. It should be chosen such that the current through it does not exceed the current through a 50 resistor to VDDD - 2 V (21 mA in the high state). This large resistor will most likely be a poor match to the board impedance. The match can be improved by the user of a Thevenin equivalent resistor pair. Such a Thevenin equivalent resistor will burn much more system power (but not on-chip power) than would a single resistor, but it does allow for impedance matching in the absence of aVDDD - 2 V supply. Termination resistor options are shown in Table 30. Experienced ECL designers sometimes use the (bipolar) ECL output buffers in a tied-OR configuration. Unfortunately, this cannot be done with these LVPECL buffers. Table 30. Nominal dc Power for Suggested Terminations Note: The value is the average of the high and low states in LVPECL output buffer and external terminating resistors, for a single-ended output. The values double for double-ended outputs. Terminating Resistor and Voltage 50 to VDDD - 2 V1 125 to VDDD and 83 to GND2
1. 2. Standard ECL termination (parallel). Thevenin equivalent or 50 to VDDD - 2 V.
Output Transistor (on-chip) Power (mW) 15 15
Terminating Resistor (off-chip) Power (mW) 13 52
100
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Line Interface (continued)
LVPECL I/O Termination and Load Specifications (continued)
The input common mode range for LVPECL differential buffers is from 1 V to 2.75 V; and the swing needs to be at least 300 mV. So basically what it means is the lowest voltage on the input should be no lower than (1 V - 0.150 V) and the highest voltage on the input shouldn't be more than (2.75 V + 0.150 V). So if the differential swing is 800 mV, then the common mode range would be 2.5 V down to 1.25 V. This is all for 3 V buffers.
Interface Description
Microprocessor Interface
This device is equipped with a generic 16-bit microprocessor interface that allows operation with most commercially available microprocessors. Input MPMODE is used to configure this interface into one of two possible modes (synchronous or asynchronous). In synchronous mode, the microprocessor interface can operate at speeds from 1 MHz up to 66 MHz.* In asynchronous mode, the internal 78 MHz system clock is used to operate this interface. Table 31. MPU Modes MPMODE 0 1 Mode Async Sync Microprocessor Interface Signals CS, INT, D[15:0], A[15:0], ADS, R/W, DS, DT MPCLK, CS, INT, D[15:0], A[15:0], ADS, R/W, DT
The host interface is designed to connect directly to a commonly used asynchronous or synchronous host bus. The interface to this block includes a separate clock, MPCLK, which is used in the synchronous interface mode. The interface is only a slave on the host bus. There is no posting of writes in the host interface; all registers are directly accessible. The microprocessor interface pins use 3.3 V (5 V, TTL-tolerant) CMOS I/O levels. The microprocessor interface timing specifications are given in the Interface Timing Specifications section (see Table 163-- Table 166, pages 257--263).
* All status counters must be read within the 1-second time window of the PMRST. If this is not the case, counter values will be l ost.
Agere Systems Inc.
101
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Description (continued)
General-Purpose I/O Bus (GPIO)
GPIO[3:0] are bidirectional pins. They can be configured individually as input or output by writing to the GPIO mode and GPIO output configuration registers (addresses 0x0013, 0x0014, 0015; see register descriptions, page 152). The value to be output is written into the GPIO output register (address 0x000F; see register descriptions, page 150). To use the GPIO pins as outputs, set the GPIO output configuration bits (bits 8 and 0) to 1, and set the GPIO mode bits GPIO[3:0]_DIRECTION_ I/O (address 0x0013, bits [3:0]) to 1. The input value is read from the GPIO input register (address 0x000A; see register description, page148). GPIO pins can also be used to generate an interrupt upon a change in value. An interrupt can be generated on either the input level or edge, depending on the GPIO mode register. Figure 29 shows how the GPIO functions.
CORE REGISTERS 0000 0001 0002 0003 0004 0005 0008 000A COMPOSITE INTERRUPTS GPIO INPUTS ACTIVE GPIO MODE DIRECTION POS. EDGE DET. DEVICE NAME = TDAT042G5 GPIO OUTPUTS 3210 + DEVICE VERSION INTERRUPTS GPIO INPUTS 3210 3210
000C BLOCK INTERRUPT MASKS 000E 000F 0010 0011 0012 0013 001F CORE RESETS GPIO OUTPUTS LINE PROVISIONING CHANNEL CONTROL LOOPBACK CONTROL GPIO MODE SCRATCH
321032103210 LEVEL EDGE
3
2 GPIO[3:0]
1
0
5-7058(F)r.6
Figure 29. GPIO Functionality If a GPIO pin is an input, the logic value on the pin can be read from a software register. The GPIO pin can also be programmed to generate a level-sensitive interrupt or a positive edge-triggered interrupt contributing to the external interrupt pin. If a GPIO pin is an output, the value provisioned will appear on the device pin immediately.
102
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Description (continued)
Interrupts
Interrupt requests can be read from the composite interrupts register (0x0008; see register description, page 148). There is also a corresponding block interrupt masks register (0x000C; see register description, page 149). Any unmasked request will cause the INT pin to go low. GPIO interrupt functionality is shown in Figure 30.
CORE REGISTERS 0000 0001 0002 0003 0004 0005 0008 000A COMPOSITE INTERRUPTS GPIO INPUTS INTERRUPTS PM 3 2 1 0 UT DE PT OH PM INTERRUPT (GPIO) DEVICE NAME = TDAT042G5 DEVICE VERSION INTERRUPT (OHP) INTERRUPT (DE) INTERRUPT (UT) INTERRUPT (PT)
000C BLOCK INTERRUPT MASKS 000E 000F 0010 0011 0012 0013 001F CORE RESETS GPIO OUTPUTS LINE PROVISIONING CHANNEL CONTROL LOOPBACK CONTROL GPIO MODE SCRATCH BLOCK INTERRUPT MASKS 3 2 1 0
INT
5-7059(F)r.5
Figure 30. Interrupt Functionality
Agere Systems Inc.
103
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Description (continued)
Reset
If the reset pin RST (C7) is forced low, the software registers will be placed in their default powerup state. The device will lose its previous state, and data path continuity will be lost. An internal 100 k pull-up and a Schmitttrigger input is provided for this pin. Reset can be generated from software by writing 0x0005 to the core resets register (0x000E; see register description on page 149 and timing on page 263).
Performance Monitor Reset (PMRST)
A 1 Hz clock (PMRST) is provided to all internal macrocells. This clock is used to control the 1-second binning of coding violations (CVs) and alarms. The source of this clock is selectable from one of the three following sources:
I I I
The PMRST pin (D7) A software controllable register (0x000E; see register description on page 149) An internal 1-second counter (sourced from the 77.76 MHz transmit clock).
This is configured by the line provisioning register (address 0x0010). When under software control, writing 0x0080 to core resets register (address 0x000E) will generate a PMRSTX pulse.
MODE[11:0] LB[11:0]
5-7060(F)r.4
CORE REGISTERS 0000 0001 0002 0003 0004 0005 0008 000A COMPOSITE INTERRUPTS GPIO INPUTS DEVICE NAME = TDAT042G5 DEVICE VERSION INTERRUPTS PM CORE RESETS
POS. EDGE DET.
RRR
1 SEC. COUNT
000C BLOCK INTERRUPT MASKS 000E 000F 0010 0011 0012 0013 001F CORE RESETS GPIO OUTPUTS LINE PROVISIONING CHANNEL CONTROL LOOPBACK CONTROL GPIO MODE SCRATCH LOOPBACKS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LB A LB B LB C LB D LINE EQ./UNEQ. A 11 B 10 C LINE PROVISIONING PMS 48 12 12 12 12 76543210 9 D 8
PMRST I/O CONTROL 15
DELTA
RST
PMRST
Figure 31. Miscellaneous Functionality 104 Agere Systems Inc.
PMRSTX
ARST
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Description (continued)
Performance Monitor Reset (PMRST) (continued)
Address 0x0010, bits 8 and 9 of the core register set defines the mode of operation for PMRST. Address 0x000E, bit 7 provides the software-controllable reset function (see Register Maps section, page 112). When this bit is set to 1, the PMRST signal goes high. The register will automatically be reset to 0, and the PMRST signal will go low after 500 ms. Table 32. PMRST Provisioning Core Register ADDR 0x0010, Bits 9, 8 00 01 Description PMRST comes from external pin (1 Hz, 50% duty cycle signal). PMRST comes from internal 1-second counter (1 Hz, 50% duty cycle signal). Writing a logic 1 to the PMRST bit (core register 0x000E, bit 7) in this mode will reset the counter so that a 01 transition occurs on the PMRST within 10 clock cycles of the 77.76 MHz clock. PMRST is software controlled. Writing a logic 1 to the PMRST bit (core register 0x000E, bit 7) will cause a 01 transition on the internal PMRST signal. This pulse will be high for 100 cycles of the 77.76 MHz clock and low for 100 cycles of the 77.76 MHz clock. Writing the PMRST bit to a logic 1 during this 200 clock cycle interval will have no effect (2.57 s). The PMRST rising edge must occur within 10 clock cycles of writing the PMRST bit.
11
Agere Systems Inc.
105
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Description (continued)
Loopback Operation
Figure 32 illustrates the different types of loopback provided in the device. Loopback is controlled by core register 0x0012, loopback control (see register description on page 151).
SOURCE
5-7061(F)r.4
SINK FAR END
FACILITY
TERMINAL
NEAR END
INTERFACE
INTERFACE
LINE
LINE
OHP
OHP
DE
DE
UT
LAYER 2
UT
PT
PT
CONT
FACILITY (OPTICS)
CONT
TERMINAL B
TERMINAL A
Figure 32. Loopback Operation In the following description, only the data path from Terminal A to B is discussed, but the same terms apply to the reverse direction. Near-End Loopback The packet/cell payload is looped back to the data source (Layer 2 device) as soon as it crosses the Layer 1 to Layer 2 boundary (UTOPIA block). Far-End Loopback The packet/cell payload is looped back to the facility (optical) data source as soon as it enters the UTOPIA block of Terminal B. The data does not enter the Layer 2 device. The total delay from receive data input to transmit data output in far-end loopback (FELB) mode is approximately 2 s. Terminal Loopback The SONET/SDH signal is looped back at the terminal (line interface) block, and is returned to the Layer 2 device. For terminal loopback of UTOPIA ports B, C, or D to function, UTOPIA port A must be provisioned for terminal loopback. This is because only the Tx clock from port A is used in terminal loopback mode. Facility Loopback The facility (optical) data signal is looped back to the facility as soon as it enters the Terminal B line interface block. SONET facility loopback is only available in STS-3/STM-1 and STS-12/STM-4 modes.
106
Agere Systems Inc.
LAYER 2
OPTICS
OPTICS
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Description (continued)
System Interfaces
ATM Interfaces
TxCLK[A] TxENB[A] TxPA[A] TxSZ[A] TxDATA[15:0][A] TxPRTY[A] TxSOP/C[A] TxEOP[A] TxERR[A] RxCLK[A]* RxENB[A] RxPA[A] TDAT042G5 RxSZ[A] RxDATA[15:0][A] RxPRTY[A] RxSOP/C[A] RxEOP[A] RxERR[A] [B] [B] [C] [C] [D] [D] TxCLK TxENB TxCLAV TxDATA[15:0] TxPRTY TxSOC ATM DEVICE RxCLK RxENB RxCLAV RxDATA[15:0] RxPRTY RxSOC
DEVICE #2 DEVICE #3 DEVICE #4
5-6750(F)r.3
* RxCLK may be either sunk or sourced, depending upon the application. The transmit and receive signals for channels B, C, and D of the TDAT042G5 device are mapped to the remaining three ATM devices as shown above.
Figure 33. Quad ATM UTOPIA 2 For the quad ATM UTOPIA 3 eight-bit interface mode, where the ATM device has only an 8-bit interface, the RxDATA[15:0] and TxDATA[15:0] words are replaced with RxDATA[15:8] and TxDATA[15:8] in each channel of the TDAT042G5. This is shown in the following table. Table 33. Quad ATM UTOPIA 3 Interface TDAT042G5 Channel TxDATA[15:8][A] RxDATA[15:8][A] Same signals for channel [B] Same signals for channel [C] Same signals for channel [D] TxDATA[7:0] RxDATA[7:0] Same signals for device #2 Same signals for device #3 Same signals for device #4 ATM Device
Agere Systems Inc.
107
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Description (continued)
System Interfaces (continued)
ATM Interfaces (continued)
TX CLOCK
TxCLK[A] TxENB[A] TxPA[A] TxSZ[A:B] TxDATA[15:0][A:B] TxPRTY[A] TxSOP/C[A] TxEOP[A] TxERR[A] TDAT042G5 RxCLK[A]* RxENB[A] RxPA[A] RxSZ[A] RxDATA[15:0][A:B] RxPRTY[A] RxSOP/C[A] RxEOP[A] RxERR[A]
TxCLK TxENB TxCLAV TxDATA[31:0] TxPRTY TxSOC RX CLOCK ATM DEVICE RxCLK RxENB RxCLAV RxDATA[31:0] RxPRTY RxSOC
5-6740(F)r.5
* RxCLK may be either sunk or sourced, depending upon the application.
Figure 34. Single ATM UTOPIA 3
108
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Description (continued)
System Interfaces (continued)
POS Interfaces
TxCLK[A] TxENB[A] TxPA[A] TxSZ[A] TxDATA[15:0][A] TxPRTY[A] TxSOP/C[A] TxEOP[A] TxERR[A] RxCLK[A]* RxENB[A] RxPA[A] TDAT042G5 RxSZ[A] RxDATA[15:0][A] RxPRTY[A] RxSOP/C[A] RxEOP[A] RxERR[A] [B] [B] [C] [C] [D] [D] TFCLK TENB TPA TMOD TDAT[15:0] TPRTY TSOP TEOP TERR POS DEVICE RFCLK RENB RPA RMOD RDAT[15:0] RPRTY RSOP REOP RERR
DEVICE #2 DEVICE #3 DEVICE #4
5-6741(F)r.7
* RxCLK may be either sunk or sourced, depending upon the application. The transmit and receive signals for channels B, C, and D of the TDAT042G5 device are mapped to the remaining three POS devices as shown above.
Figure 35. Quad POS UTOPIA 2 For the quad POS UTOPIA 3 eight-bit interface mode, where the POS device has only an 8-bit interface, the RxDATA and TxDATA words are replaced with RxDATA[15:8] and TxDATA[15:8] in each channel of the TDAT042G5. This is shown in the following table. Table 34. Quad POS UTOPIA 3 Interface TDAT042G5 Channel TxDATA[15:8][A] RxDATA[15:8][A] Same signals for channel [B] Same signals for channel [C] Same signals for channel [D] TxDATA[7:0] RxDATA[7:0] Same signals for device #2 Same signals for device #3 Same signals for device #4 POS Device
Agere Systems Inc.
109
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Description (continued)
System Interfaces (continued)
POS Interfaces (continued)
TX CLOCK
TxCLK[A] TxENB[A] TxPA[A] TxSZ[A:B] TxDATA[15:0][A:B] TxPRTY[A] TxSOP/C[A] TxEOP[A] TxERR[A] TDAT042G5 RxCLK[A/B]* RxENB[A] RxPA[A] RxSZ[A] RxDATA[15:0][A:B] RxPRTY[A] RxSOP/C[A] RxEOP[A] RxERR[A] RX CLOCK
TFCLK TENB TPA TMOD[1:0] TDAT[31:0] TPRTY TSOP TEOP TERR POS DEVICE RFCLK RENB RPA RMOD[1:0] RDAT[31:0] RPRTY RSOP REOP RERR
5-6743(F)r.7
* RxCLK may be either sunk or sourced, depending upon the application.
Figure 36. Single POS UTOPIA 3
TX CLOCK
TxCLK[A] TxENB[A] TxPA[A] TxSZ[A:B] TxDATA[15:0][A:B] TxPRTY[A] TxSOP/C[A] TxEOP[A] TxERR[A] TxADDR[4:0] TxPA[B:D] RX CLOCK TDAT042G5 RxCLK[A:B]* RxENB[A] RxPA[A] RxSZ[A] RxDATA[15:0][A:B] RxPRTY[A] RxSOP/C[A] RxEOP[A] RxERR[A] RxADDR[4:0] RxPA[B:D]
TXCLK TXENB TXCLAV[0] TXMOD[1:0] TXDAT[31:0] TXPRTY TXSOP TXEOP TXERR TxADDR[12:0] TxCLAV[3:1]
LAYER DEVICE RXCLK RXENB RXCLAV[0] RXMOD[1:0] RXDAT[31:0] RXPRTY RXSOP RXEOP RXERR RXADDR[12:0] RXCLAV[3:1]
5-6743(F).br.2
* RxCLK may be either sunk or sourced, depending upon the application.
Figure 37. 32-bit MPHY UTOPIA 3 110 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Access Description
Register address space is defined by the 16-bit address word of ADDR[15:0] (see Table 6, page 41). Bits 15 through 13 must be 0. Bits 12 through 9 map to the major functional blocks as shown in Table 35. The usable address space is also shown in Table 35. Table 35. Register Address Space Functional Block Core UT OHP PT DE Address Range (Hex) 0x0000--0x001F 0x0200--0x0226 0x0400--0x05C2 0x0800--0x0AF8 0x1000--0x1607
Register addresses outside of the space defined in Table 35 must not be addressed, i.e., written or read. Table 36--Table 40 are the register maps. Details of the register functions are given in the following register description tables. Note that the usable register address space is not contiguous. Register addresses not specifically identified in the following tables are reserved and must not be addressed, i.e., written or read. Registers and bits that are reserved must not be written or must be written to the indicated default value. In Table 36--Table 40, the registers may be read only (RO), read/write (R/W), write only (WO), or clear-on-read or clear-on-write (COR/W). The core registers must be written prior to provisioning any other registers (1) to establish the internal clock rates for the device, and (2) because writing to certain core registers resets the remainder of the device. Certain clocks must be present to read/write registers prior to provisioning the device. One of the following clocks must be present prior to provisioning to enable register access.
I I
TxCKP and TxCKN MPU clock (microprocessor interface synchronous mode only)
Provisioning must be implemented in the following sequence.
I I I
Core register 0x0010 (mode) must be provisioned first Core register 0x0011 (channel [A--D] control) second Remainder of the core registers must then be provisioned (order does not matter)
It is recommended, but not required, that the remainder of the device be provisioned in the following order.
I I
OHP PT, and DE blocks (order does not matter) , UT block to turn on the data source to the master and slave
Agere Systems Inc.
111
Register Maps
112
Bit Number 13 Version Control DEVICE_VERSION[7:0] ASCII_NAME_TD ASCII_NAME_AT ASCII_NAME_04 ASCII_NAME_2G ASCII_NAME_5CR Reserved Composite Interrupts GPIO[3:0]I (COR/W) General-Purpose Input Reserved Reserved Block Interrupt Masks Reserved GPIO[3:0]IM Core Resets Reserved Reserved General-Purpose Output Reserved Provisioning POF_ POS
EQ_CH_B
Core Registers
Table 36. Map of Core Registers
Address (Hex) 12 11 10 9 8 7 6 5 4 3 2 1 0
(RO), (R/W), (WO), (COR/W)
15
14
Default Value (Hex)
0000
RO
Reserved
0100 5444 4154 3034 3247 350D 0000
0001
RO
0002
RO
0003
RO
0004
RO
0005
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0006-- 0007 UTI (RO) DEI (RO) Reserved
--
0008
RO or PMRST COR/W (COR/W)
Reserved
PTI (RO)
OHPI (RO)
0000
0009
--
0000 GPIO[3:0]_INPUT_VALUE -- 0000 DEIM Reserved PTIM OHPIM FFFF 0000 Reserved SWRST GPIO[3:0]_OUTPUT_VALUE -- 0000 COR/ COW PLL_ MODE STS48
STS12[A] STS12[B] STS12[C] STS12[D]
000A
RO
000B UTIM
000C
R/W
PMRSTM
Reserved
000D PMRST
000E
WO
000F Reserved Reserved LOOPBACK[3:0]_CH_B GPIO[3:0]_INTERRUPT_ACTIVE_H/L Reserved Reserved
GPIO[1]_OC GPIO[3]_OC
R/W PMMODE[1:0]
0010
R/W
Reserved
SDH/ SONET
EQ_CH_C
1070 Reserved LOOPBACK[3:0]_CH_C GPIO[3:0]_INTERRUPT_LEVEL/EDGE Reserved Reserved Reserved
EQ_CH_D
0011
R/W
EQ_CH_A
Reserved
Reserved LOOPBACK[3:0]_CH_D GPIO[3:0]_DIRECTION_I/O
GPIO[0]_OC GPIO[2]_OC
0000 0000 0000 0000 0000 0000 CORE_SCRATCH[15:0] 0000
0012
R/W
LOOPBACK[3:0]_CH_A
0013
R/W
PMRST_ IO_CTRL
Reserved
0014
R/W
0015
R/W
0016-- 001E
--
Agere Systems Inc.
Data Sheet May 2001
001F
R/W
Register Maps (continued)
UT Registers
Data Sheet May 2001
Table 37. Map of UT Registers
Bit Number 13 UT Macrocell Version Number Reserved
UT Interrupt
Agere Systems Inc.
12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) UT_VERSION[7:0] 0000 Reserved Delta & Event Parameters Channel A Reserved
FIFO_ OVERFLOW TxA FIFO_ UNDERFLOW_ TxA FIFO_ OVERFLOW TxB FIFO_ UNDERFLOW_ TxB FIFO_ OVERFLOW TxC FIFO_ UNDERFLOW_ TxC FIFO_ OVERFLOW TxD FIFO_ UNDERFLOW_ TxD FIFO_ OVERFLOW RxA FIFO_ OVERFLOW RxB FIFO_ OVERFLOW RxC FIFO_ OVERFLOW RxD PARITY_E RROR_ TxA UT_INT [D] UT_INT [C] UT_INT [B] UT_INT [A]
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0200
RO
0201
RO
0000
0202
COR/W
0000
Channel B Reserved
PARITY_E RROR_ TxB
0203
COR/W
0000
Channel C Reserved
PARITY_E RROR_ TxC
0204
COR/W
0000
Channel D Reserved
PARITY_E RROR_ TxD
0205
COR/W
0000
Interrupt Mask Parameters
0206
R/W
Reserved Channel A Reserved
INTM[D]
INTM[C]
INTM[B]
INTM[A]
FIFO_ FIFO_ FIFO_ PARITY_E OVERUNDEROVER- RROR_Tx FLOW_Tx FLOW_Tx FLOW_Rx _ _MASK[A] _MASK[A] _MASK[A] MASK[A]
000F 000F
0207
R/W
Channel B Reserved
FIFO_ FIFO_ FIFO_ PARITY_E OVERUNDEROVER- RROR_Tx FLOW_Tx FLOW_Tx FLOW_Rx _ _MASK[B] _MASK[B] _MASK[B] MASK[B]
0208
R/W
000F
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
113
Register Maps (continued)
114
Bit Number 13 Channel C Reserved
FIFO_ FIFO_ FIFO_ PARITY_E OVERUNDEROVER- RROR_Tx _ FLOW_Tx FLOW_Tx FLOW_Rx _MASK[C] _MASK[C] _MASK[C] MASK[C]
UT Registers (continued)
Table 37. Map of UT Registers (continued)
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
12
11
10
9
8
7
6
5
4
3
2
1
0
Default Value (Hex)
0209
R/W
000F
Channel D Reserved
FIFO_ FIFO_ FIFO_ PARITY_E OVERUNDEROVER- RROR_Tx FLOW_Tx FLOW_Tx FLOW_Rx _ _MASK[D] _MASK[D] _MASK[D] MASK[D]
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
020A
R/W
000F
Error Counters in PMRST Mode
Channel A PMRST_PECTxA Channel B PMRST_PECTxB Channel C PMRST_PECTxC Channel D PMRST_PECTxD
UT Provisioning Registers
020B
RO
0000 0000 0000 0000
020C
RO
020D
RO
020E Channel A RxADDR_A[4:0]
Reserved
RO
020F
R/W
POLLING_ ENB_RxA
Reserved
CLOCK_ PARITY_ MODE_ RxA RxA Reserved PARITY_ TxA Reserved Reserved
ATM_ SIZE_ RxA ATM_ SIZE_ TxA
TRAFFIC _ TYPE_ RxA TRAFFIC _ TYPE_ TxA
UTOPIA_MODE_RxA[2:0]
0020
0210
R/W
POLLING_ ENB_TxA
Reserved
TxADDR_A[4:0]
UTOPIA_MODE_TxA[2:0]
0000
0211 EGRESS_WATERMARK_HIGH_A[6:0]
R/W
Reserved
INGRESS_WATERMARK_HIGH_A[6:0] Channel B RxADDR_B[4:0]
INGRESS_WATERMARK_LOW_A[6:0] EGRESS_WATERMARK_LOW_A[6:0]
Reserved CLOCK_ PARITY_
361F 361F UTOPIA_MODE_RxB[2:0] MODE_ RxB RxB Reserved PARITY_ TxB Reserved Reserved ATM_ SIZE_ RxB ATM_ SIZE_ TxB
TRAFFIC _ TYPE_ RxB TRAFFIC _ TYPE_ TxB
0212
R/W
Reserved
0213
R/W
POLLING_ ENB_RxB
Reserved
0120
0214
R/W
POLLING_ ENB_TxB
Reserved
TxADDR_B[4:0]
UTOPIA_MODE_TxB[2:0]
0120
0215
R/W
Reserved
INGRESS_WATERMARK_HIGH_B[6:0] EGRESS_WATERMARK_HIGH_B[6:0]
INGRESS_WATERMARK_LOW_B[6:0] EGRESS_WATERMARK_LOW_B[6:0]
361F 361F
Agere Systems Inc.
Data Sheet May 2001
0216
R/W
Reserved
Register Maps (continued)
UT Registers (continued)
Data Sheet May 2001
Table 37. Map of UT Registers (continued)
Bit Number 13 RxADDR_C[4:0] RxC PARITY_ TxC
Reserved CLOCK_ PARITY_
Address (Hex)
Agere Systems Inc.
12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) 0220 TxADDR_C[4:0] MODE_ RxC Reserved 0220 INGRESS_WATERMARK_HIGH_C[6:0] EGRESS_WATERMARK_HIGH_C[6:0] Channel D RxADDR_D[4:0] RxD PARITY_ TxD
Reserved CLOCK_ PARITY_
(RO), (R/W), (WO), (COR/W)
15
14
0217
R/W
POLLING_ ENB_RxC
Reserved
0218
R/W
POLLING_ ENB_TxC
Reserved
0219 021A
R/W R/W
Reserved Reserved
Reserved Reserved
TRAFFIC ATM_ UTOPIA_MODE_RxC[2:0] _ TYPE_ SIZE_ RxC RxC TRAFFIC ATM_ UTOPIA_MODE_TxC[2:0] _ TYPE_ SIZE_ TxC TxC INGRESS_WATERMARK_LOW_C[6:0] EGRESS_WATERMARK_LOW_C[6:0]
361F 361F 0320
021B
R/W
POLLING_ ENB_RxD
Reserved
021C
R/W
POLLING_ ENB_TxD
Reserved
TxADDR_D[4:0]
MODE_ RxD Reserved
0320
021D 021E
R/W R/W
Reserved Reserved
TRAFFIC ATM_ UTOPIA_MODE_RxD[2:0] _ TYPE_ SIZE_ RxD RxD TRAFFIC ATM_ UTOPIA_MODE_TxD[2:0] _ TYPE_ SIZE_ TxD TxD INGRESS_WATERMARK_LOW_D[6:0] EGRESS_WATERMARK_LOW_D[6:0]
361F 361F 00FF
021F
R/W
0220
RO
0000 0000 0000 0000 0000 0000
RxDATAD/ RxDATAC/ RxDATAB/ RxDATAA/ RxSOP/CD RxSOP/CC RxSOP/CB RxSOP/CA
0221
RO
0222
RO
0223
RO
0224
R/W
0225
R/W
INGRESS_WATERMARK_HIGH_D[6:0] Reserved EGRESS_WATERMARK_HIGH_D[6:0] Reserved Reset Register Reserved UT_Tx UT_Tx UT_Tx UT_Tx UT_Rx UT_Rx UT_Rx UT_Rx ARST_D ARST_C ARST_B ARST_A ARST_D ARST_C ARST_B ARST_A Error Counters Channel A PECTxA Channel B PECTxB Channel C PECTxC Channel D PECTxD Scratch Register UT_SCRATCH[15:0] PA Response Register TxPAD TxPAC TxPAB TxPAA RxPAD/ RxPAC/ RxPAB/ RxPAA/ Reserved
0226
R/W
Reserved
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Size Mode Register TxSIZE_ TxSIZE_ TxSIZE_ TxSIZE_ RxSIZE_ RxSIZE_ RxSIZE_ RxSIZE_ D C B A D C B A
0000
115
Register Maps (continued)
116
Bit Number 13 OHP Macrocell Version Number OHP_VERSION[15:0] OHP Interrupts Reserved Delta & Event Parameters SFD[A] SDD[A]
OOFD[A] OHP_INT OHP_INT[ OHP_INT[ OHP_INT[ [D] C] B] A]
OHP Registers
Table 38. Map of OHP Registers
Address (Hex) 12 11 10 9 8 7 6 5 4 3 2 1 0
(RO), (R/W), (WO), (COR/W)
15
14
Default Value (Hex)
0400
RO
0000 0000
0401
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0402
COR/W
LRDILAISRAPS- S1DMON S1DMON K2DMON K1K2DM F1DMON TTOAC_P S1BABB MOND[A] MOND[A] BABLEE 4D[A] 8D[A] D[A] OND[A] D[A] LEE[A] ERRE [A] [A]
LOFD[A] LOSD[A] LOCD[A]
0000
0403 0 SFD[B] SDD[B] 0 0 0 0 0 0 0 0
COR/W
0
0
0
0 OOFD[B]
0
0
J0MISE [A] LOFD[B] LOSD[B] LOCD[B]
0000 0000
0404
COR/W
LRDILAISRAPS- S1DMON S1DMON K2DMON K1K2DM F1DMON TTOAC_P S1BABB MOND[B] MOND[B] BABLEE 4D[B] 8D[B] D[B] OND[B] D[B] LEE[B] ERRE [B] [B]
0405 0
0
COR/W 0 SFD[C] 0 0 0 0 0 0
0
0
0 SDD[C]
0
0
0
J0MISE [B]
OOFD[C] LOFD[C] LOSD[C] LOCD[C]
0000 0000
0406
COR/W
LRDILAISRAPS- S1DMON S1DMON K2DMON K1K2DM F1DMON TTOAC_P S1BABB MOND[C] MOND[C] BABLEE 4D[C] 8D[C] D[C] OND[C] D[C] LEE[C] ERRE [C] [C]
0407 0 0 0 0 0 0 0
COR/W
0
0
0
0 SFD[D]
0 SDD[D]
0
0
0
J0MISE [C]
OOFD[D] LOFD[D] LOSD[D] LOCD[D]
0000 0000
0408
COR/W
LRDILAISRAPS- S1DMON S1DMON K2DMON K1K2DM F1DMON TTOAC_P S1BABB MOND[D] MOND[D] BABLEE 4D[D] 8D[D] D[D] OND[D] D[D] LEE[D] ERRE [D] [D]
0409
COR/W
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
J0MISE [D] TLRDIINT[A] TLRDIINT[B] TLRDIINT[C] TLRDIINT[D] SF[A] SF[B] SF[C] SF[D] SD[A] SD[B] SD[C] SD[D] OOF[A] OOF[B] OOF[C] OOF[D] LOF[A] LOF[B] LOF[C] LOF[D] LOS[A] LOS[B] LOS[C] LOS[D] LOC[A] LOC[B] LOC[C] LOC[D]
0000
Receive/Transmit State & Value Parameters Reserved Reserved Reserved Reserved Interrupt Mask Parameters SFM[A] SDM[A]
OOFM[A] LOFM[A] LOSM[A] LOCM[A]
040A
RO
LRDIMON[A]
LAISMON[A]
000C 000C 000C 000C
040B
RO
LRDIMON[B]
LAISMON[B]
040C
RO
LRDIMON[C]
LAISMON[C]
040D
RO
LRDIMON[D]
LAISMON[D]
040E
R/W
LRDILAISRAPS- S1DMON S1DMON K2DMON K1K2DM F1DMON TTOAC_P S1BABB MONM[A] MONM[A] BABLEM 4M[A] 8M[A] M[A] ONM[A] M[A] LEM[A] ERRM [A] [A]
FFFF
Agere Systems Inc.
0 0 0 0
Data Sheet May 2001
040F
R/W
INTM[A]
0
0
0
0
0
0
0
0
0
0
J0MISM [A]
8001
Register Maps (continued)
OHP Registers (continued)
Data Sheet May 2001
Table 38. Map of OHP Registers (continued)
Bit Number 13 SFM[B] SDM[B] 12 11 10 9 8 7 6 5 4 3 2 1 0
LOCM[B]
Agere Systems Inc.
Default Value (Hex) FFFF
OOFM[B] LOFM[B] LOSM[B]
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0410
R/W
LRDILAISRAPS- S1DMON S1DMON K2DMON K1K2DM F1DMON TTOAC_P S1BABB MONM[B] MONM[B] BABLEM 4M[B] 8M[B] M[B] ONM[B] M[B] LEM[B] ERRM [B] [B]
0411 0 SFM[C] SDM[C] 0 0 0 0 0 0 0 0
R/W
INTM[B]
0
0
0
0
0
J0MISM [B] LOCM[C]
8001 FFFF
0412
R/W
LRDILAISRAPS- S1DMON S1DMON K2DMON K1K2DM F1DMON TTOAC_P S1BABB MONM[C] MONM[C] BABLEM 4M[C] 8M[C] M[C] ONM[C] M[C] LEM[C] ERRM [C] [C]
OOFM[C] LOFM[C] LOSM[C]
0413 0 SFM[D] SDM[D] 0 0 0 0 0 0 0 0
R/W
INTM[C]
0
0
0
0
0 OOFM[D] LOFM[D] LOSM[D]
J0MISM [C] LOCM[D]
8001 FFFF
0414
R/W
LRDILAISRAPS- S1DMON S1DMON K2DMON K1K2DM F1DMON TTOAC_P S1BABB MONMD] MONM[D] BABLEM 4M[D] 8M[D] M[D] ONM[D] M[D] LEM[D] ERRM [D] [D]
0415 Toggles Reserved Reserved Reserved Reserved Continuous N Times Detect Values CNTDK1K2[A][3:0] CNTDS1FRAME[A][3:0] CNTDK1K2[B][3:0] CNTDS1FRAME[B][3:0] CNTDK1K2[C][3:0] CNTDS1FRAME[C][3:0] CNTDK1K2[D][3:0] CNTDS1FRAME[D][3:0] Receive Control Parameters
R/W
INTM[D]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
J0MISM [D]
SF TA1A2ER REN[A] CLEAR[A] SF TA1A2ER REN[B] CLEAR[B] SF TA1A2ER REN[C] CLEAR[C] SF TA1A2ER REN[D] CLEAR[D] SFSET [A] SFSET [B] SFSET [C] SFSET [D] SD CLEAR[A] SD CLEAR[B] SD CLEAR[C] SD CLEAR[D] SDSET [A] SDSET [B] SDSET [C] SDSET [D]
8001
0416
R/W
-- -- -- --
0417
R/W
0418
R/W
0419
R/W
041A
R/W
CNTDK2[A][3:0]
CNTDF1[A][3:0] CNTDS1[A][3:0] CNTDF1[B][3:0] CNTDS1[B]3:0] CNTDF1[C][3:0] CNTDS1[C]3:0] CNTDF1[D][3:0] CNTDS1[D]3:0]
CNTDJ0Z0[A][3:0] CNTDK1K2FRAME[A][3:0] CNTDJ0Z0[B][3:0] CNTDK1K2FRAME[B][3:0] CNTDJ0Z0[C][3:0] CNTDK1K2FRAME[C][3:0] CNTDJ0Z0[D][3:0] CNTDK1K2FRAME[D][3:0] B2BITBL DSCRIN B1BITBL ROH_BY KCNT[A] H[A] KCNT[A] PASS[A] TL[A] LOSDETCNT[A][12:0] K1K2_2 _OR_1 [A]
3333 053C 3333 053C 3333 053C 3333 053C 0000
041B
R/W
Reserved
041C
R/W
CNTDK2[B][3:0]
041D
R/W
Reserved
041E
R/W
CNTDK2[C][3:0]
041F
R/W
Reserved
0420
R/W
CNTDK2[D][3:0]
0421
R/W
Reserved
0422
R/W
J0MONMODE[A] [1:0]
M1B7IGN LAISINS LOF_AISI OOF_AIS LOS_AIS SFB1B2S SDB1B2 CNTDB1 S1MON8 [A] NH[A] INH[A] INH[A] EL[A] SEL[A] SEL[A] _OR_4C ORE[A]
0423
R/W
M1BITBLK CNT[A]
Reserved
0000
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
117
Register Maps (continued)
118
Bit Number 13
M1B7IGN LAISINS LOF_AISI OOF_AIS LOS_AIS SFB1B2S SDB1B2 CNTDB1 S1MON8 [B] NH[B] INH[B] INH[B] EL[B] SEL[B] SEL[B] _OR_4C ORE[B]
OHP Registers (continued)
Table 38. Map of OHP Registers (continued)
Address (Hex) 12 11 10 9 8 7 6 5 4 3 2 1 0
(RO), (R/W), (WO), (COR/W)
15
14
Default Value (Hex) 0000
0424 TL[B] LOSDETCNT[B][12:0]
R/W
J0MONMODE[B] [1:0]
K1K2_2 _OR_1 [B]
B2BITBL DSCRIN B1BITBL ROH_BY KCNT[B] H[B] KCNT[B] PASS[B]
0425
M1B7IGN LAISINS LOF_AISI OOF_AIS LOS_AIS SFB1B2S SDB1B2 CNTDB1 S1MON8 [C] NH[C] INH[C] INH[C] EL[C] SEL[C] SEL[C] _OR_4C ORE[C]
R/W
M1BITBLK CNT[B]
Reserved
0000 B2BITBL DSCRIN B1BITBL ROH_BY KCNT[C] H[C] KCNT[C] PASS[C] 0000
0426 TL[C] LOSDETCNT[C][12:0]
R/W
J0MONMODE[C] [1:0]
K1K2_2 _OR_1 [C]
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0427
M1B7IGN LAISINS LOF_AISI OOF_AIS LOS_AIS SFB1B2S SDB1B2 CNTDB1 S1MON8 [D] NH[D] INH[D] INH[D] EL[D] SEL[D] SEL[D] _OR_4C ORE[D]
R/W
M1BITBLK CNT[C]
Reserved
0000 B2BITBL DSCRIN B1BITBL ROH_BY KCNT[D] H[D] KCNT[D] PASS[D] 0000
0428 TL[D] LOSDETCNT[D][12:0] Reserved K1K2_2 _OR_1 [D]
R/W
J0MONMODE[D] [1:0]
0429 RREF_ EN Reserved
R/W
M1BITBLK CNT[D]
Reserved
0000 RTOACS- RTOAC- RTOACDI RTOAC_ INH[A] CINH[A] NH[A] OEPINS [A] RTOACS- RTOAC- RTOACDI RTOAC_ INH[B] CINH[B] NH[B] OEPINS [B] RTOACS- RTOAC- RTOACDI RTOAC_ INH[C] CINH[C] NH[C] OEPINS [C] RTOACS- RTOAC- RTOACDI RTOAC_ INH[D] CINH[D] NH[D] OEPINS [D] TAPS- TM1_ERR TM1_REI _INS[A] L_INH[A] BABBLEINS [A]
TF1INS [A]
042A
R/W
RREFSEL[1:0]
0000
042B
R/W
0000
042C
R/W
Reserved
0000
042D
R/W
Reserved
0000
Transmit Control Parameters TS1INS [A] 0003
042E
R/W
TTOACIN H
TJ0INS TTOAC_J TTOAC_O TTOAC_ TTOAC_ TTOAC_ TTOAC_ TTOAC_D TTOAC_ TTOAC_ EPMON [A] 0[A] INS[A] E2[A] S1[A] D4TO12 1TO3[A] F1[A] E1[A] [A] [A]
042F
R/W
TA1A2ERRINS[A][4:0]
TOH_BY SCRINH TB1ERR TB2ERR TIMER_L TSF_LR TLAISMO TLOF_LR TOOF_L PASS[A] [A] INS[A] INS[A] RDIINH DIINH[A] N_LRDII DIINH RDIINH [A] NH[A] [A] [A]
TAPSBABBLEINS [B] TM1_ERR TM1_REI _INS[B] L_INH[B]
TLOS_L RDIINH [A]
TF1INS [B]
TLOC_L RDIINH [A] TS1INS [B]
0000
Agere Systems Inc.
Data Sheet May 2001
0430
R/W
Reserved
TJ0INS TTOAC_J TTOAC_O TTOAC_ TTOAC_ TTOAC_ TTOAC_ TTOAC_D TTOAC_ TTOAC_ EPMON [B] 0[B] INS[B] E2[B] S1[B] D4TO12 1TO3[B] F1[B] E1[B] [B] [B]
0003
Register Maps (continued)
OHP Registers (continued)
Data Sheet May 2001
Table 38. Map of OHP Registers (continued)
Bit Number 13 TOH_BY SCRINH TB1ERR TB2ERR TIMER_L TSF_LR TLAISMO TLOF_LR TOOF_L PASS[B] [B] INS[B] INS[B] RDIINH DIINH[B] N_LRDII DIINH RDIINH [B] NH[B] [B] [B] TAPS- TM1_ERR TM1_REI _INS[C] L_INH[C] BABBLEINS [C] 12 11 10 9 8 7 6 5 4 3 2 1 TLOS_L RDIINH [B]
TF1INS [C]
Agere Systems Inc.
0 TLOC_L RDIINH [B] TS1INS [C] Default Value (Hex) 0000 0003 TOH_BY SCRINH TB1ERR TB2ERR TIMER_L TSF_LR TLAISMO TLOF_LR TOOF_L PASS[C] [C] INS[C] INS[C] RDIINH DIINH[C] N_LRDII DIINH RDIINH [C] NH[C] [C] [C] TAPS- TM1_ERR TM1_REI _INS[D] L_INH[D] BABBLEINS [D] TLOS_L RDIINH [C]
TF1INS [D]
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0431
R/W
TA1A2ERRINS[B][4:0]
0432
R/W
Reserved
TJ0INS TTOAC_J TTOAC_O TTOAC_ TTOAC_ TTOAC_ TTOAC_ TTOAC_D TTOAC_ TTOAC_ EPMON [C] 0[C] INS[C] E2[C] S1[C] D4TO12 1TO3[C] F1[C] E1[C] [C] [C]
0433
R/W
TA1A2ERRINS[C][4:0]
TLOC_L RDIINH [C]
TS1INS [D]
0000
0434
R/W
Reserved
TJ0IN S[D]
TTOAC_J TTOAC_O TTOAC_ TTOAC_ TTOAC_ TTOAC_ TTOAC_D TTOAC_ TTOAC_ EPMON 0[D] INS[D] E2[D] S1[D] D4TO12 1TO3[D] F1[D] E1[D] [D] [D]
0003
0435
R/W
TA1A2ERRINS[D][4:0]
TOH_BY SCRINH TB1ERR TB2ERR TIMER_L TSF_LR TLAISMO TLOF_LR TOOF_L PASS[D] [D] INS[D] INS[D] RDIINH DIINH[D] N_LRDII DIINH RDIINH [D] NH[D] [D] [D] TAISLINS[A][11:0] TAISLINS[B][11:0] TAISLINS[C][11:0] TAISLINS[D][11:0] Signal Degrade BER Algorithm Parameters OHP_SDNSSET[A][18:3] OHP_SDMSET[A][7:0] OHP_SDNSSET[B][18:3] OHP_SDMSET[B][7:0] OHP_SDNSSET[C][18:3] OHP_SDMSET[C][7:0] OHP_SDNSSET[D][18:3] OHP_SDMSET[D][7:0] OHP_SDBSET[A][15:0] OHP_SDBSET[B][15:0] OHP_SDBSET[C][15:0] OHP_SDLSET[D][3:0] OHP_SDLSET[C][3:0] OHP_SDLSET[B][3:0] OHP_SDLSET[A][3:0]
TLOS_L RDIINH [D]
TLOC_L RDIINH [D]
0000
0436
Reserved Reserved Reserved
R/W
TAPSINS [A]
TK2SINS [A]
Reserved
C000 C000 C000 C000
0437
R/W
TAPSINS [B]
TK2SINS [B]
0438
R/W
TAPSINS [C]
TK2SINS [C]
0439
R/W
TAPSINS [D]
TK2SINS [D]
043A
R/W
0000 OHP_SDNSSET[A][2:0] OHP_SDNSSET[B][2:0] OHP_SDNSSET[C][2:0] OHP_SDNSSET[D][2:0] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
043B
R/W
Reserved
043C
R/W
043D
R/W
Reserved
043E
R/W
043F
R/W
Reserved
0440
R/W
0441
R/W
Reserved
0442
R/W
0443
R/W
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0444
R/W
119
Register Maps (continued)
120
Bit Number 13 OHP_SDBSET[D][15:0] OHP_SDNSCLEAR[A][18:3] OHP_SDMCLEAR[A][7:0] OHP_SDNSCLEAR[B][18:3] OHP_SDMCLEAR[B][7:0] OHP_SDNSCLEAR[C][18:3] OHP_SDMCLEAR[C][7:0] OHP_SDNSCLEAR[D][18:3] OHP_SDMCLEAR[D][7:0] OHP_SDBCLEAR[A][15:0] OHP_SDBCLEAR[B][15:0] OHP_SDBCLEAR[C][15:0] OHP_SDBCLEAR[D][15:0] Signal Fail BER Algorithm Parameters OHP_SFNSSET[A][18:3] OHP_SFMSET[A][7:0] OHP_SFNSSET[B][18:3] OHP_SFMSET[B][7:0] OHP_SFNSSET[C][18:3] OHP_SFMSET[C][7:0] OHP_SFNSSET[D][18:3] OHP_SFMSET[D][7:0] OHP_SFBSET[A][15:0] OHP_SFBSET[B][15:0] OHP_SFBSET[C][15:0] OHP_SFBSET[D][15:0] OHP_SFNSCLEAR[A][18:3] OHP_SFMCLEAR[A][7:0] OHP_SFNSCLEAR[B][18:3] OHP_SFMCLEAR[B][7:0] OHP_SFNSCLEAR[C][18:3] OHP_SFMCLEAR[C][7:0] OHP_SFNSCLEAR[D][18:3] OHP_SFMCLEAR[D][7:0] OHP_SFLCLEAR[D][3:0] OHP_SFNSCLEAR[D][2:0] OHP_SFLCLEAR[C][3:0] OHP_SFNSCLEAR[C][2:0] OHP_SFLCLEAR[B][3:0] OHP_SFNSCLEAR[B][2:0] OHP_SFLCLEAR[A][3:0] OHP_SFNSCLEAR[A][2:0] OHP_SFLSET[D][3:0] OHP_SFNSSET[D][2:0] OHP_SFLSET[C][3:0] OHP_SFNSSET[C][2:0] OHP_SFLSET[B][3:0] OHP_SFNSSET[B][2:0] OHP_SFLSET[A][3:0] OHP_SFNSSET[A][2:0] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 OHP_SDLCLEAR[D][3:0] OHP_SDNSCLEAR[D][2:0] OHP_SDLCLEAR[C][3:0] OHP_SDNSCLEAR[C][2:0] OHP_SDLCLEAR[B][3:0] OHP_SDNSCLEAR[B][2:0] OHP_SDLCLEAR[A][3:0] OHP_SDNSCLEAR[A][2:0] 12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
OHP Registers (continued)
Table 38. Map of OHP Registers (continued)
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0445
R/W
0446
R/W
0447
R/W
Reserved
0448
R/W
0449
R/W
Reserved
044A
R/W
044B
R/W
Reserved
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
044C
R/W
044D
R/W
Reserved
044E
R/W
044F
R/W
0450
R/W
0451
R/W
0452
R/W
0453
R/W
Reserved
0454
R/W
0455
R/W
Reserved
0456
R/W
0457
R/W
Reserved
0458
R/W
0459
R/W
Reserved
045A
R/W
045B
R/W
045C
R/W
045D
R/W
045E
R/W
045F
R/W
Reserved
0460
R/W
0461
R/W
Reserved
0462
R/W
0463
R/W
Reserved
0464
R/W
Agere Systems Inc.
Data Sheet May 2001
0465
R/W
Reserved
Register Maps (continued)
OHP Registers (continued)
Data Sheet May 2001
Table 38. Map of OHP Registers (continued)
Bit Number 13 OHP_SFBCLEAR[A][15:0] OHP_SFBCLEAR[B][15:0] OHP_SFBCLEAR[C][15:0] OHP_SFBCLEAR[D][15:0] B1, B2, and M1 Error Counts B1ECNT[A][15:0] B1ECNT[B][15:0] B1ECNT[C][15:0] B1ECNT[D][15:0] Reserved B2ECNT[A][15:0] Reserved B2ECNT[B][15:0] Reserved B2ECNT[C][15:0] Reserved B2ECNT[D][15:0] Reserved M1ECNT[A][15:0] Reserved M1ECNT[B][15:0] Reserved M1ECNT[C][15:0] Reserved M1ECNT[D][15:0] Transmit F1, S1, K2, K1 OH Insert Value TF1DINS[A][7:0] TK2DINS[A][7:0] TF1DINS[B][7:0] TK2DINS[B][7:0] TF1DINS[C][7:0] TK2DINS[C][7:0] TF1DINS[D][7:0] TK2DINS[D][7:0] TS1DINS[A][7:0] TK1DINS[A][7:0] TS1DINS[B][7:0] TK1DINS[B][7:0] TS1DINS[C][7:0] TK1DINS[C][7:0] TS1DINS[D][7:0] TK1DINS[D][7:0] 0000 0000 0000 0000 0000 0000 0000 0000 M1ECNT[D][20:16] M1ECNT[C][20:16] M1ECNT[B][20:16] M1ECNT[A][20:16] B2ECNT[D][21:16] B2ECNT[C][21:16] B2ECNT[B][21:16] B2ECNT[A][21:16] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 12 11 10 9 8 7 6 5 4 3 2 1 0
Agere Systems Inc.
Default Value (Hex) 0000 0000 0000 0000
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0466
R/W
0467
R/W
0468
R/W
0469
R/W
046A
RO
046B
RO
046C
RO
046D
RO
046E
RO
046F
RO
0470
RO
0471
RO
0472
RO
0473
RO
0474
RO
0475
RO
0476
RO
0477
RO
0478
RO
0479
RO
047A
RO
047B
RO
047C
RO
047D
RO
047E
R/W
047F
R/W
0480
R/W
0481
R/W
0482
R/W
0483
R/W
0484
R/W
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
121
0485
R/W
Register Maps (continued)
122
Bit Number 13 Receive F1, S1, K2, K1 Monitor Value F1DMON1[A][7:0] K2DMON[A][7:0] Reserved F1DMON1[B][7:0] K2DMON[B][7:0] Reserved F1DMON1[C][7:0] K2DMON[C][7:0] Reserved F1DMON1[D][7:0] K2DMON[D][7:0] Reserved Receive J0 Monitor Value RJ0DMON[A][2][7:0] RJ0DMON[A][4][7:0] RJ0DMON[A][6][7:0] RJ0DMON[A][8][7:0] RJ0DMON[A][10][7:0] RJ0DMON[A][12][7:0] RJ0DMON[A][14][7:0] RJ0DMON[A][16][7:0] Reserved RJ0DMON[B][2][7:0] RJ0DMON[B][4][7:0] RJ0DMON[B][6][7:0] RJ0DMON[B][8][7:0] RJ0DMON[B][10][7:0] RJ0DMON[B][12][7:0] RJ0DMON[B][14][7:0] RJ0DMON[B][16][7:0] Reserved RJ0DMON[B][1][7:0] RJ0DMON[B][3][7:0] RJ0DMON[B][5][7:0] RJ0DMON[B][7][7:0] RJ0DMON[B][9][7:0] RJ0DMON[B][11][7:0] RJ0DMON[B][13][7:0] RJ0DMON[B][15][7:0] RJ0DMON[A][1][7:0] RJ0DMON[A][3][7:0] RJ0DMON[A][5][7:0] RJ0DMON[A][7][7:0] RJ0DMON[A][9][7:0] RJ0DMON[A][11][7:0] RJ0DMON[A][13][7:0] RJ0DMON[A][15][7:0] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 F1DMON0[C][7:0] K1DMON[C][7:0] S1DMON[C][7:0] F1DMON0[D][7:0] K1DMON[D][7:0] S1DMON[D][7:0] S1DMON[B][7:0] K1DMON[B][7:0] F1DMON0[B][7:0] S1DMON[A][7:0] K1DMON[A][7:0] F1DMON0[A][7:0] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex)
OHP Registers (continued)
Table 38. Map of OHP Registers (continued)
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0486
RO
0487
RO
0488
RO
0489
RO
048A
RO
048B
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
048C
RO
048D
RO
048E
RO
048F
RO
0490
RO
0491
RO
0492
RO
0493
RO
0494
RO
0495
RO
0496
RO
0497
RO
0498
RO
0499
RO
049A-- 04B1
--
04B2
RO
04B3
RO
04B4
RO
04B5
RO
04B6
RO
04B7
RO
04B8
RO
04B9
RO
Agere Systems Inc.
Data Sheet May 2001
04BA-- 04D1
--
Register Maps (continued)
OHP Registers (continued)
Data Sheet May 2001
Table 38. Map of OHP Registers (continued)
Bit Number 13 RJ0DMON[C][2][7:0] RJ0DMON[C][4][7:0] RJ0DMON[C][6][7:0] RJ0DMON[C][8][7:0] RJ0DMON[C][10][7:0] RJ0DMON[C][12][7:0] RJ0DMON[C][14][7:0] RJ0DMON[C]16][7:0] Reserved RJ0DMON[D][2][7:0] RJ0DMON[D][4][7:0] RJ0DMON[D][6][7:0] RJ0DMON[D][8][7:0] RJ0DMON[D][10][7:0] RJ0DMON[D][12][7:0] RJ0DMON[D][14][7:0] RJ0DMON[D]16][7:0] Reserved J0 Byte Transmit Insert (16 Bytes) TJ0DINS[A][2][7:0] TJ0DINS[A][4][7:0] TJ0DINS[A][6][7:0] TJ0DINS[A][8][7:0] TJ0DINS[A][10][7:0] TJ0DINS[A][12][7:0] TJ0DINS[A][14][7:0] TJ0DINS[A][16][7:0] Reserved TJ0DINS[B][2][7:0] TJ0DINS[B][4][7:0] TJ0DINS[B][6][7:0] TJ0DINS[B][1][7:0] TJ0DINS[B][3][7:0] TJ0DINS[B][5][7:0] TJ0DINS[A][1][7:0] TJ0DINS[A][3][7:0] TJ0DINS[A][5][7:0] TJ0DINS[A][7][7:0] TJ0DINS[A][9][7:0] TJ0DINS[A][11][7:0] TJ0DINS[A][13][7:0] TJ0DINS[A][15][7:0] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 RJ0DMON[D][1][7:0] RJ0DMON[D][3][7:0] RJ0DMON[D][5][7:0] RJ0DMON[D][7][7:0] RJ0DMON[D][9][7:0] RJ0DMON[D][11][7:0] RJ0DMON[D][13][7:0] RJ0DMON[D][15][7:0] RJ0DMON[C][7][7:0] RJ0DMON[C][9][7:0] RJ0DMON[C][11][7:0] RJ0DMON[C][13][7:0] RJ0DMON[C][15][7:0] RJ0DMON[C][5][7:0] RJ0DMON[C][3][7:0] RJ0DMON[C][1][7:0] 12 11 10 9 8 7 6 5 4 3 2 1 0
Agere Systems Inc.
Default Value (Hex) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
04D2
RO
04D3
RO
04D4
RO
04D5
RO
04D6
RO
04D7
RO
04D8
RO
04D9
RO
04DA-- 04F1
--
04F2
RO
04F3
RO
04F4
RO
04F5
RO
04F6
RO
04F7
RO
04F8
RO
04F9
RO
04FA-- 0511
--
0512
R/W
0513
R/W
0514
R/W
0515
R/W
0516
R/W
0517
R/W
0518
R/W
0519
R/W
051A-- 0531
--
0532
R/W
0533
R/W
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0534
R/W
123
Register Maps (continued)
124
Bit Number 13 TJ0DINS[B][8][7:0] TJ0DINS[B][10][7:0] TJ0DINS[B][12][7:0] TJ0DINS[B][14][7:0] TJ0DINS[B][16][7:0] Reserved TJ0DINS[C][2][7:0] TJ0DINS[C][4][7:0] TJ0DINS[C][6][7:0] TJ0DINS[C][8][7:0] TJ0DINS[C][10][7:0] TJ0DINS[C][12][7:0] TJ0DINS[C][14][7:0] TJ0DINS[C][16][7:0] Reserved TJ0DINS[D][2][7:0] TJ0DINS[D][4][7:0] TJ0DINS[D][6][7:0] TJ0DINS[D][8][7:0] TJ0DINS[D][10][7:0] TJ0DINS[D][12][7:0] TJ0DINS[D][14][7:0] TJ0DINS[D][16][7:0] Reserved Z0 Byte Transmit Insert TZ0DINS[A][2][7:0] TZ0DINS[A][4][7:0] TZ0DINS[A][6][7:0] TZ0DINS[A][8][7:0] TZ0DINS[A][10][7:0] TZ0DINS[A][12][7:0] Reserved TZ0DINS[A][3][7:0] TZ0DINS[A][5][7:0] TZ0DINS[A][7][7:0] TZ0DINS[A][9][7:0] TZ0DINS[A][11][7:0] 0000 0000 0000 0000 0000 0000 TJ0DINS[D][1][7:0] TJ0DINS[D][3][7:0] TJ0DINS[D][5][7:0] TJ0DINS[D][7][7:0] TJ0DINS[D][9][7:0] TJ0DINS[D][11][7:0] TJ0DINS[D][13][7:0] TJ0DINS[D][15][7:0] TJ0DINS[C][1][7:0] TJ0DINS[C][3][7:0] TJ0DINS[C][5][7:0] TJ0DINS[C][7][7:0] TJ0DINS[C][9][7:0] TJ0DINS[C][11][7:0] TJ0DINS[C][13][7:0] TJ0DINS[C][15][7:0] TJ0DINS[B][15][7:0] TJ0DINS[B][13][7:0] TJ0DINS[B][11][7:0] TJ0DINS[B][9][7:0] TJ0DINS[B][7][7:0] 12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
OHP Registers (continued)
Table 38. Map of OHP Registers (continued)
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0535
R/W
0536
R/W
0537
R/W
0538
R/W
0539
R/W
053A-- 0551
--
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0552
R/W
0553
R/W
0554
R/W
0555
R/W
0556
R/W
0557
R/W
0558
R/W
0559
R/W
055A-- 0571
--
0572
R/W
0573
R/W
0574
R/W
0575
R/W
0576
R/W
0577
R/W
0578
R/W
0579
R/W
057A-- 05A9
--
05AA
R/W
05AB
R/W
05AC
R/W
05AD
R/W
05AE
R/W
Agere Systems Inc.
Data Sheet May 2001
05AF
R/W
Register Maps (continued)
OHP Registers (continued)
Data Sheet May 2001
Table 38. Map of OHP Registers (continued)
Bit Number 13 TZ0DINS[B][2][7:0] TZ0DINS[B][4][7:0] TZ0DINS[B][6][7:0] TZ0DINS[B][8][7:0] TZ0DINS[B][10][7:0] TZ0DINS[B][12][7:0] TZ0DINS[C][2][7:0] TZ0DINS[C][4][7:0] TZ0DINS[C][6][7:0] TZ0DINS[C][8][7:0] TZ0DINS[C][10][7:0] TZ0DINS[C][12][7:0] TZ0DINS[D][2][7:0] TZ0DINS[D][4][7:0] TZ0DINS[D][6][7:0] TZ0DINS[D][8][7:0] TZ0DINS[D][10][7:0] TZ0DINS[D][12][7:0] OHP Scratch Register OHP_SCRATCH[15:0] 0000 Reserved TZ0DINS[C][3][7:0] TZ0DINS[C][5][7:0] TZ0DINS[C][7][7:0] TZ0DINS[C][9][7:0] TZ0DINS[C][11][7:0] Reserved TZ0DINS[D][3][7:0] TZ0DINS[D][5][7:0] TZ0DINS[D][7][7:0] TZ0DINS[D][9][7:0] TZ0DINS[D][11][7:0] TZ0DINS[B][9][7:0] TZ0DINS[B][11][7:0] TZ0DINS[B][7][7:0] TZ0DINS[B][5][7:0] TZ0DINS[B][3][7:0] Reserved 12 11 10 9 8 7 6 5 4 3 2 1 0
Agere Systems Inc.
Default Value (Hex) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
05B0
R/W
05B1
R/W
05B2
R/W
05B3
R/W
05B4
R/W
05B5
R/W
05B6
R/W
05B7
R/W
05B8
R/W
05B9
R/W
05BA
R/W
05BB
R/W
05BC
R/W
05BD
R/W
05BE
R/W
05BF
R/W
05C0
R/W
05C1
R/W
05C2
R/W
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
125
Register Maps (continued)
126
Bit Number 13 PT Macrocell Version Number Reserved
PT Interrupt
PT Registers
Table 39. Map of Path Terminator Registers
Address (Hex) 12 11 10 9 8 7 6 5 4 3 2 1 0
(RO), (R/W), (WO), (COR/W)
15
14
Default Value (Hex)
0800 Reserved PT Delta & Event Parameters Port A Reserved Reserved Reserved Port B Reserved Reserved Reserved Port C Reserved Reserved RPIHD[C][1--12] RZ5DMO RZ4DMO RZ3DMO RH4DMO RF2DMO RRDIPD RC2DMO RUC2D [C] ND[C] ND[C] ND[C] ND[C] ND[C] MOND[C] ND[C] Reserved Port D Reserved Reserved RPIHD[D][1--12] RZ5DMO RZ4DMO RZ3DMO RH4DMO RF2DMO RRDIPD RC2DMO RUC2D [D] ND[D] ND[D] ND[D] ND[D] ND[D] MOND[D] ND[D] Reserved PT State Registers Port A State Registers Reserved
RPIH_STATE[A][1] [1:0] RPIH_STATE[A][2] [1:0] RPIH_STATE[A][3] [1:0] RPIH_STATE[A][4] [1:0] RPIH_STATE[A][5] [1:0]
RO
PT_VERSION[7:0]
PT_INT[D PT_INT[C PT_INT[B] PT_INT[A] ] ]
0000 0000
0801
RO
0802
COR/W RJ1DMON
RPIHD[A][1--12] RZ5DMO RZ4DMO RZ3DMO RH4DMO RF2DMO RRDIPD RC2DMO RUC2D [A] ND[A] ND[A] ND[A] ND[A] ND[A] MOND[A] ND[A] RPPLMD RSDD[A] [A]
RSFD[A]
0000 0000 0000
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
MIS[A]E
0803
COR/W TRDIPD [A]
0804-- 080E RPIHD[B][1--12]
--
080F
COR/W RJ1DMON
0000 RPPLMD RSDD[B] [B]
RSFD[B]
MIS[B]E
0810
COR/W TRDIPD [B]
RZ5DMO RZ4DMO RZ3DMO RH4DMO RF2DMO RRDIPD RC2DMO RUC2D [B] ND[B] ND[B] ND[B] ND[B] ND[B] MOND[B] ND[B]
0000 0000
0811-- 081B
--
081C
COR/W RJ1DMON
0000 RPPLMD RSDD[C] [C]
RSFD[C]
MIS[C]E
081D
COR/W TRDIPD [C]
0000 0000
081E-- 0828
--
0829
COR/W RJ1DMON
0000 RPPLMD RSDD[D] [D]
RSFD[D]
MIS[D]E
082A
COR/W TRDIPD [D]
0000 0000
082B-- 0835
--
Agere Systems Inc.
Data Sheet May 2001
0836
RO
RSSDRP[A][1:0]
RPIH_STATE[A][6] [1:0]
0AAA
Register Maps (continued)
PT Registers (continued)
Data Sheet May 2001
Table 39. Map of Path Terminator Registers (continued)
Bit Number 13
RPIH_STATE[A][7] [1:0] RPIH_STATE[A][8] [1:0] RPIH_STATE[A][9] [1:0] RPIH_STATE[A][10] [1:0] RUC2VS [A] RPPLMS [A] RPIH_STATE[A][11] [1:0]
Agere Systems Inc.
12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) 0AAA
RSDS[A] RSF[A] RPIH_STATE[A][12] [1:0]
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0837 Reserved RF2DMON[A][7:0] RZ3DMON[A][7:0] RZ5DMON[A][7:0] Reserved RJ1DMON[A][1][7:0] RJ1DMON[A][3][7:0] RJ1DMON[A][5][7:0] RJ1DMON[A][7][7:0] RJ1DMON[A][9][7:0] RJ1DMON[A][11][7:0] RJ1DMON[A][13][7:0] RJ1DMON[A][15][7:0] RJ1DMON[A][17][7:0] RJ1DMON[A][19][7:0] RJ1DMON[A][21][7:0] RJ1DMON[A][23][7:0] RJ1DMON[A][25][7:0] RJ1DMON[A][27][7:0] RJ1DMON[A][29][7:0] RJ1DMON[A][31][7:0] RJ1DMON[A][33][7:0] RJ1DMON[A][35][7:0] RJ1DMON[A][37][7:0] RJ1DMON[A][39][7:0] RJ1DMON[A][41][7:0] RJ1DMON[A][43][7:0] RJ1DMON[A][45][7:0] RJ1DMON[A][47][7:0] RJ1DMON[A][49][7:0] RJ1DMON[A][51][7:0] RJ1DMON[A][2][7:0] RJ1DMON[A][4][7:0] RJ1DMON[A][6][7:0] RJ1DMON[A][8][7:0] RJ1DMON[A][10][7:0] RJ1DMON[A][12][7:0] RJ1DMON[A][14][7:0] RJ1DMON[A][16][7:0] RJ1DMON[A][18][7:0] RJ1DMON[A][20][7:0] RJ1DMON[A][22][7:0] RJ1DMON[A][24][7:0] RJ1DMON[A][26][7:0] RJ1DMON[A][28][7:0] RJ1DMON[A][30][7:0] RJ1DMON[A][32][7:0] RJ1DMON[A][34][7:0] RJ1DMON[A][36][7:0] RJ1DMON[A][38][7:0] RJ1DMON[A][40][7:0] RJ1DMON[A][42][7:0] RJ1DMON[A][44][7:0] RJ1DMON[A][46][7:0] RJ1DMON[A][48][7:0] RJ1DMON[A][50][7:0] RJ1DMON[A][52][7:0] RZ4DMON[A][7:0] RC2DMON[A][7:0] RH4DMON[A][7:0] RRDIPDMON[A][2:0]
RO
Reserved
0838
RO
TRDIPINT[A][2:0]
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0839
RO
083A
RO
083B
RO
083C-- 0867
--
0868
RO
0869
RO
086A
RO
086B
RO
086C
RO
086D
RO
086E
RO
086F
RO
0870
RO
0871
RO
0872
RO
0873
RO
0874
RO
0875
RO
0876
RO
0877
RO
0878
RO
0879
RO
087A
RO
087B
RO
087C
RO
087D
RO
087E
RO
087F
RO
0880
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
127
0881
RO
Register Maps (continued)
128
Bit Number 13 RJ1DMON[A][53][7:0] RJ1DMON[A][55][7:0] RJ1DMON[A][57][7:0] RJ1DMON[A][59][7:0] RJ1DMON[A][61][7:0] RJ1DMON[A][63][7:0] Port B State Registers Reserved
RPIH_STATE[B][7] [1:0] RPIH_STATE[B][8] [1:0] RPIH_STATE[B][9] [1:0] RPIH_STATE[B][10] [1:0] RPIH_STATE[B][1] [1:0] RPIH_STATE[B][2] [1:0] RPIH_STATE[B][3] [1:0] RPIH_STATE[B][4] [1:0] RPIH_STATE[B][5] [1:0] RPIH_STATE[B][11] [1:0] RUC2VS [B] RPPLMS [B] RPIH_STATE[B][6] [1:0] RPIH_STATE[B][12] [1:0] RSDS[B] RSF[B]
PT Registers (continued)
Table 39. Map of Path Terminator Registers (continued)
Address (Hex) 12 RJ1DMON[A][54][7:0] RJ1DMON[A][56][7:0] RJ1DMON[A][58][7:0] RJ1DMON[A][60][7:0] RJ1DMON[A][62][7:0] RJ1DMON[A][64][7:0] 11 10 9 8 7 6 5 4 3 2 1 0
(RO), (R/W), (WO), (COR/W)
15
14
Default Value (Hex) 0000 0000 0000 0000 0000 0000 0AAA 0AAA 0000 0000
0882
RO
0883
RO
0884
RO
0885
RO
0886
RO
0887
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0888
RO
RSSDRP[B][1:0]
0889 Reserved RF2DMON[B][7:0] RZ3DMON[B][7:0] RZ5DMON[B][7:0] Reserved RJ1DMON[B][1][7:0] RJ1DMON[B][3][7:0] RJ1DMON[B][5][7:0] RJ1DMON[B][7][7:0] RJ1DMON[B][9][7:0] RJ1DMON[B][11][7:0] RJ1DMON[B][13][7:0] RJ1DMON[B][15][7:0] RJ1DMON[B][17][7:0] RJ1DMON[B][19][7:0] RJ1DMON[B][21][7:0] RJ1DMON[B][23][7:0] RJ1DMON[B][25][7:0] RJ1DMON[B][27][7:0] RJ1DMON[B][29][7:0] RJ1DMON[B][31][7:0] RJ1DMON[B][33][7:0] RRDIPDMON[B][2:0]
RO
Reserved
088A
RO
TRDIPINT[B][2:0]
088B
RO
RC2DMON[B][7:0] RH4DMON[B][7:0] RZ4DMON[B][7:0]
088C
RO
0000 0000 0000 RJ1DMON[B][2][7:0] RJ1DMON[B][4][7:0] RJ1DMON[B][6][7:0] RJ1DMON[B][8][7:0] RJ1DMON[B][10][7:0] RJ1DMON[B][12][7:0] RJ1DMON[B][14][7:0] RJ1DMON[B][16][7:0] RJ1DMON[B][18][7:0] RJ1DMON[B][20][7:0] RJ1DMON[B][22][7:0] RJ1DMON[B][24][7:0] RJ1DMON[B][26][7:0] RJ1DMON[B][28][7:0] RJ1DMON[B][30][7:0] RJ1DMON[B][32][7:0] RJ1DMON[B][34][7:0] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
088D
RO
088E-- 08B9
--
08BA
RO
08BB
RO
08BC
RO
08BD
RO
08BE
RO
08BF
RO
08C0
RO
08C1
RO
08C2
RO
08C3
RO
08C4
RO
08C5
RO
08C6
RO
08C7
RO
08C8
RO
08C9
RO
Agere Systems Inc.
Data Sheet May 2001
08CA
RO
Register Maps (continued)
PT Registers (continued)
Data Sheet May 2001
Table 39. Map of Path Terminator Registers (continued)
Bit Number 13 RJ1DMON[B][35][7:0] RJ1DMON[B][37][7:0] RJ1DMON[B][39][7:0] RJ1DMON[B][41][7:0] RJ1DMON[B][43][7:0] RJ1DMON[B][45][7:0] RJ1DMON[B][47][7:0] RJ1DMON[B][49][7:0] RJ1DMON[B][51][7:0] RJ1DMON[B][53][7:0] RJ1DMON[B][55][7:0] RJ1DMON[B][57][7:0] RJ1DMON[B][59][7:0] RJ1DMON[B][61][7:0] RJ1DMON[B][63][7:0] Port C State Registers Reserved
RPIH_STATE[C][7] [1:0] RPIH_STATE[C][8] [1:0] RPIH_STATE[C][1] [1:0] RPIH_STATE[C][2] [1:0] RPIH_STATE[C][3] [1:0] RPIH_STATE[C][9] [1:0] RPIH_STATE[C][4] [1:0] RPIH_STATE[C][10] [1:0] RPIH_STATE[C][5] [1:0] RPIH_STATE[C][11] [1:0] RPIH_STATE[C][6] [1:0] RPIH_STATE[C][12] [1:0]
Agere Systems Inc.
12 RJ1DMON[B][36][7:0] RJ1DMON[B][38][7:0] RJ1DMON[B][40][7:0] RJ1DMON[B][42][7:0] RJ1DMON[B][44][7:0] RJ1DMON[B][46][7:0] RJ1DMON[B][48][7:0] RJ1DMON[B][50][7:0] RJ1DMON[B][52][7:0] RJ1DMON[B][54][7:0] RJ1DMON[B][56][7:0] RJ1DMON[B][58][7:0] RJ1DMON[B][60][7:0] RJ1DMON[B][62][7:0] RJ1DMON[B][64][7:0] 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0AAA 0AAA RRDIPDMON[C][2:0]
RUC2VS [C] RPPLMS [C] RSDS[C] RSF[C]
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
08CB
RO
08CC
RO
08CD
RO
08CE
RO
08CF
RO
08D0
RO
08D1
RO
08D2
RO
08D3
RO
08D4
RO
08D5
RO
08D6
RO
08D7
RO
08D8
RO
08D9
RO
08DA
RO
RSSDRP[C][1:0]
08DB Reserved RF2DMON[C][7:0] RZ3DMON[C][7:0] RZ5DMON[C][7:0]
RO
Reserved
08DC
RO
TRDIPINT[C][2:0]
0000 RC2DMON[C][7:0] RH4DMON[C][7:0] RZ4DMON[C][7:0] Reserved 0000 0000 0000 0000 RJ1DMON[C][2][7:0] RJ1DMON[C][4][7:0] RJ1DMON[C][6][7:0] RJ1DMON[C][8][7:0] RJ1DMON[C][10][7:0] RJ1DMON[C][12][7:0] RJ1DMON[C][14][7:0] RJ1DMON[C][16][7:0] 0000 0000 0000 0000 0000 0000 0000 0000
08DD
RO
08DE
RO
08DF
RO
08E0-- 090B RJ1DMON[C][1][7:0] RJ1DMON[C][3][7:0] RJ1DMON[C][5][7:0] RJ1DMON[C][7][7:0] RJ1DMON[C][9][7:0] RJ1DMON[C][11][7:0] RJ1DMON[C][13][7:0] RJ1DMON[C][15][7:0]
--
090C
RO
090D
RO
090E
RO
090F
RO
0910
RO
0911
RO
0912
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0913
RO
129
Register Maps (continued)
130
Bit Number 13 RJ1DMON[C][17][7:0] RJ1DMON[C][19][7:0] RJ1DMON[C][21][7:0] RJ1DMON[C][23][7:0] RJ1DMON[C][25][7:0] RJ1DMON[C][27][7:0] RJ1DMON[C][29][7:0] RJ1DMON[C][31][7:0] RJ1DMON[C][33][7:0] RJ1DMON[C][35][7:0] RJ1DMON[C][37][7:0] RJ1DMON[C][39][7:0] RJ1DMON[C][41][7:0] RJ1DMON[C][43][7:0] RJ1DMON[C][45][7:0] RJ1DMON[C][47][7:0] RJ1DMON[C][49][7:0] RJ1DMON[C][51][7:0] RJ1DMON[C][53][7:0] RJ1DMON[C][55][7:0] RJ1DMON[C][57][7:0] RJ1DMON[C][59][7:0] RJ1DMON[C][61][7:0] RJ1DMON[C][63][7:0] Port D State Registers Reserved RPIH_STATE[D][7] [1:0] RPIH_STATE[D][1] [1:0] RPIH_STATE[D][2] [1:0] RPIH_STATE[D][8] [1:0] RPIH_STATE[D][3] [1:0] RPIH_STATE[D][9] [1:0] RPIH_STATE[D][4] [1:0] RPIH_STATE[D][5] [1:0] RPIH_STATE[D][6] [1:0] RPIH_STATE[D][10] RPIH_STATE[D][11] RPIH_STATE[D][12] [1:0] [1:0] [1:0] RRDIPDMON[D][2:0] RUC2VS RPPLMS RSDS[D] [D] [D] RC2DMON[D][7:0] RH4DMON[D][7:0] RZ4DMON[D][7:0] RSF[D] 0AAA 0AAA 0000 0000 0000 0000 RJ1DMON[C][30][7:0] RJ1DMON[C][32][7:0] RJ1DMON[C][34][7:0] RJ1DMON[C][36][7:0] RJ1DMON[C][38][7:0] RJ1DMON[C][40][7:0] RJ1DMON[C][42][7:0] RJ1DMON[C][44][7:0] RJ1DMON[C][46][7:0] RJ1DMON[C][48][7:0] RJ1DMON[C][50][7:0] RJ1DMON[C][52][7:0] RJ1DMON[C][54][7:0] RJ1DMON[C][56][7:0] RJ1DMON[C][58][7:0] RJ1DMON[C][60][7:0] RJ1DMON[C][62][7:0] RJ1DMON[C][64][7:0] RJ1DMON[C][28][7:0] RJ1DMON[C][26][7:0] RJ1DMON[C][24][7:0] RJ1DMON[C][22][7:0] RJ1DMON[C][20][7:0] RJ1DMON[C][18][7:0] 12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 Reserved RF2DMON[D][7:0] RZ3DMON[D][7:0] RZ5DMON[D][7:0]
PT Registers (continued)
Table 39. Map of Path Terminator Registers (continued)
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0914
RO
0915
RO
0916
RO
0917
RO
0918
RO
0919
RO
091A
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
091B
RO
091C
RO
091D
RO
091E
RO
091F
RO
0920
RO
0921
RO
0922
RO
0923
RO
0924
RO
0925
RO
0926
RO
0927
RO
0928
RO
0929
RO
092A
RO
092B
RO
092C
RO
RSSDRP[D][1:0]
092D
RO
Reserved
092E
RO
TRDIPINT[D][2:0]
092F
RO
0930
RO
Agere Systems Inc.
Data Sheet May 2001
0931
RO
Register Maps (continued)
PT Registers (continued)
Data Sheet May 2001
Table 39. Map of Path Terminator Registers (continued)
Bit Number 13 Reserved RJ1DMON[D][1][7:0] RJ1DMON[D][3][7:0] RJ1DMON[D][5][7:0] RJ1DMON[D][7][7:0] RJ1DMON[D][9][7:0] RJ1DMON[D][11][7:0] RJ1DMON[D][13][7:0] RJ1DMON[D][15][7:0] RJ1DMON[D][17][7:0] RJ1DMON[D][19][7:0] RJ1DMON[D][21][7:0] RJ1DMON[D][23][7:0] RJ1DMON[D][25][7:0] RJ1DMON[D][27][7:0] RJ1DMON[D][29][7:0] RJ1DMON[D][31][7:0] RJ1DMON[D][33][7:0] RJ1DMON[D][35][7:0] RJ1DMON[D][37][7:0] RJ1DMON[D][39][7:0] RJ1DMON[D][41][7:0] RJ1DMON[D][43][7:0] RJ1DMON[D][45][7:0] RJ1DMON[D][47][7:0] RJ1DMON[D][49][7:0] RJ1DMON[D][51][7:0] RJ1DMON[D][53][7:0] RJ1DMON[D][55][7:0] RJ1DMON[D][57][7:0] RJ1DMON[D][59][7:0] RJ1DMON[D][61][7:0] RJ1DMON[D][63][7:0] RJ1DMON[D][6][7:0] RJ1DMON[D][8][7:0] RJ1DMON[D][10][7:0] RJ1DMON[D][12][7:0] RJ1DMON[D][14][7:0] RJ1DMON[D][16][7:0] RJ1DMON[D][18][7:0] RJ1DMON[D][20][7:0] RJ1DMON[D][22][7:0] RJ1DMON[D][24][7:0] RJ1DMON[D][26][7:0] RJ1DMON[D][28][7:0] RJ1DMON[D][30][7:0] RJ1DMON[D][32][7:0] RJ1DMON[D][34][7:0] RJ1DMON[D][36][7:0] RJ1DMON[D][38][7:0] RJ1DMON[D][40][7:0] RJ1DMON[D][42][7:0] RJ1DMON[D][44][7:0] RJ1DMON[D][46][7:0] RJ1DMON[D][48][7:0] RJ1DMON[D][50][7:0] RJ1DMON[D][52][7:0] RJ1DMON[D][54][7:0] RJ1DMON[D][56][7:0] RJ1DMON[D][58][7:0] RJ1DMON[D][60][7:0] RJ1DMON[D][62][7:0] RJ1DMON[D][64][7:0] RJ1DMON[D][4][7:0] RJ1DMON[D][2][7:0] 12 11 10 9 8 7 6 5 4 3 2 1 0
Agere Systems Inc.
Default Value (Hex) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0932-- 095D
--
095E
RO
095F
RO
0960
RO
0961
RO
0962
RO
0963
RO
0964
RO
0965
RO
0966
RO
0967
RO
0968
RO
0969
RO
096A
RO
096B
RO
096C
RO
096D
RO
096E
RO
096F
RO
0970
RO
0971
RO
0972
RO
0973
RO
0974
RO
0975
RO
0976
RO
0977
RO
0978
RO
0979
RO
097A
RO
097B
RO
097C
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
097D
RO
131
Register Maps (continued)
132
Bit Number 13 PT Interrupt Mask Control Reserved Port A Interrupt Mask Control Reserved Reserved Reserved Port B Interrupt Mask Control Reserved Reserved Reserved Port C Interrupt Mask Control Reserved Reserved Reserved Port D Interrupt Mask Control Reserved Reserved RPIH_STATEM[D][1--12] RZ5DMO RZ4DMO RZ3DMO RH4DMO RF2DMO RRDIPD- RC2MON RUC2VM RPPLMM RSDM[D] RSFM[D] M[D] [D] [D] NM[D] NM[D] NM[D] NM[D] NM[D] MONM[D] Reserved Error Counters Port A Reserved Reserved Reserved Reserved RPI_DEC[A][10:0] RPI_INC[A][10:0] 0000 0000 0000 0000 8FFF FFFF 0000 RPIH_STATEM[C][1--12] RZ5DMO RZ4DMO RZ3DMO RH4DMO RF2DMO RRDIPD- RC2MON RUC2VM RPPLMM RSDM[C] RSFM[C] M[C] [C] [C] NM[C] NM[C] NM[C] NM[C] NM[C] MONM[C] 8FFF FFFF 0000 RPIH_STATEM[B][1--12] RZ5DMO RZ4DMO RZ3DMO RH4DMO RF2DMO RRDIPD- RC2MON RUC2VM RPPLMM RSDM[B] RSFM[B] MONM[B] M[B] [B] [B] NM[B] NM[B] NM[B] NM[B] NM[B] 8FFF FFFF 0000 RPIH_STATEM[A][1--12] RZ5DMO RZ4DMO RZ3DMO RH4DMO RF2DMO RRDIPD- RC2MON RUC2VM RPPLMM RSDM[A] RSFM[A] MONM[A] M[A] [A] [A] NM[A] NM[A] NM[A] NM[A] NM[A] 8FFF FFFF 0000 PTINTM[D--A] 000F 12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex)
PT Registers (continued)
Table 39. Map of Path Terminator Registers (continued)
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
097E
R/W
PT_FUNCMODE
097F
R/W
RJ1DMON MISM[A]
0980
R/W
TRDIPINTM[A]
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0981-- 098B
--
098C
R/W
RJ1DMON MISM[B]
098D
R/W
TRDIPINTM[B]
098E-- 0998
R/W
0999
R/W
RJ1DMON MISM[C]
099A
R/W
TRDIPINTM[C]
099B-- 09A5
--
09A6
R/W
RJ1DMON MISM[D]
09A7
R/W
TRDIPINTM[D]
09A8-- 09B2
--
09B3
RO
09B4-- 09BE
--
09BF
RO
Agere Systems Inc.
Data Sheet May 2001
09C0-- 09CA
--
Register Maps (continued)
PT Registers (continued)
Data Sheet May 2001
Table 39. Map of Path Terminator Registers (continued)
Bit Number 13 RNDFCNT[A][12:0] Reserved RB3ERRCNT[A][15:0] Reserved RREIPERRCNT[A][15:0] Reserved Port B Reserved Reserved Reserved Reserved RNDFCNT[B][12:0] Reserved RB3ERRCNT[B][15:0] Reserved RREIPERRCNT[B][15:0] Reserved Port C Reserved Reserved Reserved Reserved RNDFCNT[C][12:0] Reserved RB3ERRCNT[C][15:0] RPI_DEC[C][10:0] RPI_INC[C][10:0] 0000 0000 0000 0000 0000 0000 0000 RPI_DEC[B][10:0] RPI_INC[B][10:0] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 12 11 10 9 8 7 6 5 4 3 2 1 0
Agere Systems Inc.
Default Value (Hex) 0000 0000 0000 0000 0000 0000
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
09CB
RO
Reserved
09CC-- 09D6
--
09D7
RO
09D8-- 09E2
--
09E3
RO
09E4-- 09EE
--
09EF
RO
09F0-- 09FA
--
09FB
RO
09FC-- 0A06
--
0A07
RO
Reserved
0A08-- 0A13
--
0A14
RO
0A15-- 0A1F
--
0A20
RO
0A21-- 0A2B
--
0A2C
RO
0A2D-- 0A37
--
0A38
RO
0A39-- 0A43
--
0A44
RO
Reserved
0A45-- 0A4F
--
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
133
0A50
RO
Register Maps (continued)
134
Bit Number 13 Reserved RREIPERRCNT[C][15:0] Reserved Port D Reserved Reserved Reserved Reserved RNDFCNT[D][12:0] Reserved RB3ERRCNT[D][15:0] Reserved RREIPERRCNT[D][15:0] Reserved
PT One-Shot Control
PT Registers (continued)
Table 39. Map of Path Terminator Registers (continued)
Address (Hex) 12 11 10 9 8 7 6 5 4 3 2 1 0
(RO), (R/W), (WO), (COR/W)
15
14
Default Value (Hex) 0000 0000 0000
0A51-- 0A5B
--
0A5C
RO
0A5D-- 0A67 RPI_INC[D][10:0]
--
0A68
RO
0000 0000
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0A69-- 0A73 RPI_DEC[D][10:0]
--
0A74
RO
0000 0000 0000 0000 0000 0000 0000 0000
0A75-- 0A7F
--
0A80
RO
Reserved
0A81-- 0A8B
--
0A8C
RO
0A8D-- 0A97
--
0A98
RO
0A99-- 0AA3 SDSET[A--D] Reserved
--
0AA4
WO
SDCLEAR[A--D]
SFCLEAR[A--D]
PT Control Parameters Port A
SFSET[A--D]
-- 0000
0AA5
--
0AA6
R/W
RPOHMONSEL[A][3:0]
Reserved
RCONC_ RJ1FRAMEA[A][1:0] RJ1DMP Reserved RB3BITB RIINCDE ALLOR C[A] LKCNT C_6OR8 FIRST[A] [A] MAJ[A] CONCATI_EXPECTED[A][1--12] MASK_CONCAT[A][1--12] RFORCE_AIS[A][1--12]
Reserved
RDIPMO N_ENH _OR1B[A]
1200
0AA7
R/W
RFORCE_LOP[A][1--4]
0000 0FFF 0000 0000
0AA8
R/W
RFORCE_LOP[A][5--8]
0AA9
R/W
RFORCE_LOP[A][9--12]
0AAA
R/W
Tx_REIP_VALUE[A][3:0]
TRDIPS Reserved TRDIP_P TRDIP_ TRDIP_L TRDIP_L TRDIP_AI TRDIP_ TREIPER TB3ERR TJ1INS[A] Reserved UNEQUIP CD[A] OPPINH SINH[A] ENH RINS[A] INS[A] INS[A] LMPINH[A] INH[A] [A] _OR1B[A]
Agere Systems Inc.
Data Sheet May 2001
0AAB
R/W
TPOHINSSEL[A][3:0]
THx_STATE[A][1--6][1:0]
1AAA
LCDRegister Maps (continued)
PT Registers (continued)
Data Sheet May 2001
Table 39. Map of Path Terminator Registers (continued)
Bit Number 13 THx_STATE[A][7--12][1:0] CNTDF2[A][3:0] Port B Reserved
RCONC_ ALLOR FIRST[B] RJ1FRAMEA[B][1:0]
Agere Systems Inc.
12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) 3AAA CNTDC2[A][3:0] Reserved
RDIPMON _ENH _OR1B[B]
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0AAC CNTDRDIP[A][3:0] RJ1DMP Reserved RB3BITB RIINCDE C[B] LKCNT C_6OR8 [B] MAJ[B]
R/W
CNTDH4Z3Z4[A][3:0]
0AAD
R/W
CNTDZ5[A][3:0]
3333 1200
0AAE
R/W
RPOHMONSEL[B][3:0]
0AAF MASK_CONCAT[B][1--12]
R/W
RFORCE_LOP[B][1--4]
CONCATI_EXPECTED[B][1--12]
0000 0FFF 0000 0000
0AB0
R/W
RFORCE_LOP[B][5--8]
0AB1
R/W
RFORCE_LOP[B][9--12]
0AB2
R/W
Tx_REIP_VALUE[B][3:0]
RFORCE_AIS[B][1--12] TRDIPSI Reserved TRDIP_P TRDIP_ TRDIP_LC TRDIP_L TRDIP_AI TRDIP_ TREIPER- TB3ERRI TJ1INS[B] Reserved UNEQUIP D[B] ENH RINS[B] OPPINH SINH[B] LMPNS[B] NS[B] INH[B] _OR1B[B] [B] INH[B] THx_STATE[B][1--6][1:0] THx_STATE[B][7--12][1:0] CNTDF2[B][3:0] Port C
Reserved RCONC_ RJ1FRAMEA[C][1:0] RJ1DMP Reserved RB3BITB RIINCDE ALLOR C[C] LKCNT C_6OR8 FIRST[C] [C] MAJ[C] CONCATI_EXPECTED[C][1--12] MASK_CONCAT[C][1--12] RFORCE_AIS[C][1--12] TRDIPS Reserved TRDIP_P TRDIP_ TRDIP_L TRDIP_L TRDIP_AI TRDIP_ TREIPER- TB3ERR TJ1INS[C] Reserved ENH RINS[C] INS[C] INS[C] LMPUNEQUIP CD[C][C] OPPINH SINH[C] [C] _OR1B[C] INH[C] INH[C] THx_STATE[C][1--6][1:0] THx_STATE[C][7--12][1:0] CNTDF2[C][3:0] CNTDRDIP[C][3:0] CNTDC2[C][3:0] Reserved RDIPMO N_ENH _OR1[C]
0AB3
R/W
TPOHINSSEL[B][3:0]
1AAA 3AAA CNTDC2[B][3:0] 3333
1200
0AB4
R/W
CNTDH4Z3Z4[B][3:0]
0AB5
R/W
CNTDZ5[B][3:0]
CNTDRDIP[B][3:0]
0AB6
R/W
RPOHMONSEL[C][3:0]
0AB7
R/W
RFORCE_LOP[C][1--4]
0000 0FFF 0000 0000
0AB8
R/W
RFORCE_LOP[C][5--8]
0AB9
R/W
RFORCE_LOP[C][9--12]
0ABA
R/W
Tx_REIP_VALUE[C][3:0]
0ABB
R/W
TPOHINSSEL[C][3:0]
1AAA 3AAA 3333
0ABC
R/W
CNTDH4Z3Z4[C][3:0]
0ABD
R/W
CNTDZ5[C][3:0]
Port D Reserved RCONC_ RJ1FRAMEA[D][1:0] RJ1DMP Reserved RB3BITB RIINCDE ALLOR C[D] LKCNT C_6OR8 FIRST[D] [D] MAJ[D] CONCATI_EXPECTED[D][1--12] MASK_CONCAT[D][1--12] RFORCE_AIS[D][1--12] Reserved RDIPMO N_ENH _OR1[D] 1200
0ABE
R/W
RPOHMONSEL[D][3:0]
0ABF
R/W
RFORCE_LOP[D][1--4]
0000 0FFF 0000
0AC0
R/W
RFORCE_LOP[D][5--8]
0AC1
R/W
RFORCE_LOP[D][9--12]
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
135
Register Maps (continued)
136
Bit Number 13 TRDIPS Reserved TRDIP_P TRDIP_ TRDIP_LC TRDIP_L TRDIP_AI TRDIP_ TREIPER TB3ERRI UNEQUIP D[D] ENH LMPOPPINH[ SINH[D] RINS NS[D] INS[D] INH[D] _OR1B[D] INH[D] D] [D] TJ1INS [D] THx_STATE[D][1--6][1:0] THx_STATE[D][7--12][1:0] CNTDF2[D][3:0]
PT Provisioning Registers
PT Registers (continued)
Table 39. Map of Path Terminator Registers (continued)
Address (Hex) 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved
(RO), (R/W), (WO), (COR/W)
15
14
Default Value (Hex) 0000
0AC2
R/W
Tx_REIP_VALUE[D][3:0]
0AC3 CNTDRDIP[D][3:0]
PG_PROV_PNUM [1:0]
R/W
TPOHINSSEL[D][3:0]
1AAA 3AAA CNTDC2[D][3:0] PG_PROV_TNUM[3:0] Reserved RC2EXPVAL[7:0] TC2DINS[7:0] TH4DINS[7:0] TZ4DINS[7:0] 3333 0001 0000 0000 0000 0000 0000 0000 PT_SFLSET[3:0] 0000 0000 0000 PT_SFLCLEAR[3:0] 0000 0000 0000 0000
0AC4
R/W
CNTDH4Z3Z4[D][3:0]
0AC5 Reserved TSS[1:0] Reserved TF2DINS[7:0] TZ3DINS[7:0] TZ5DINS[7:0]
Signal Fail (SF) B3 BER Algorithm Control Signals
R/W
CNTDZ5[D][3:0]
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
0AC6 Reserved
R/W
0AC7
R/W
TRDIPDINS[2:0]
0AC8
R/W
0AC9
R/W
0ACA
R/W
0ACB PT_SFMSET[7:0]
Reserved
R/W Reserved PT_SFBSET[11:0] PT_SFNSSET[15:0] PT_SFMCLEAR[7:0]
Reserved
0ACC
R/W
0ACD
R/W
PT_SFNSSET[18:16]
0ACE
R/W
0ACF PT_SFNSCLEAR[15:0]
R/W
Reserved PT_SFBCLEAR[11:0]
Signal Degrade (SD) B3 BER Algorithm Control Signals
0AD0
R/W
PT_SFNSCLEAR[18:16]
0AD1 PT_SDMSET[7:0]
Reserved
R/W
0AD2
R/W
Reserved PT_SDBSET[11:0] PT_SDNSSET[15:0] Reserved PT_SDBCLEAR[11:0] PT_SDNSCLEAR[15:0] Transmit J1 Data Insert Registers
PT_SDLSET[3:0]
0000 0000 0000 PT_SDLCLEAR[3:0] 0000 0000 0000 TJ1DINS[2][7:0] TJ1DINS[4][7:0] TJ1DINS[6][7:0] TJ1DINS[8][7:0] TJ1DINS[10][7:0] TJ1DINS[12][7:0] 0000 0000 0000 0000 0000 0000
0AD3 PT_SDMCLEAR[7:0]
Reserved
R/W
PT_SDNSSET[18:16]
0AD4
R/W
0AD5
R/W
0AD6
R/W
PT_SDNSCLEAR[18:16]
0AD7 TJ1DINS[1][7:0] TJ1DINS[3][7:0] TJ1DINS[5][7:0] TJ1DINS[7][7:0] TJ1DINS[9][7:0] TJ1DINS[11][7:0]
R/W
0AD8
R/W
0AD9
R/W
0ADA
R/W
0ADB
R/W
0ADC
R/W
Agere Systems Inc.
Data Sheet May 2001
0ADD
R/W
Register Maps (continued)
PT Registers (continued)
Data Sheet May 2001
Table 39. Map of Path Terminator Registers (continued)
Bit Number 13 TJ1DINS[13][7:0] TJ1DINS[15][7:0] TJ1DINS[17][7:0] TJ1DINS[19][7:0] TJ1DINS[21][7:0] TJ1DINS[23][7:0] TJ1DINS[25][7:0] TJ1DINS[27][7:0] TJ1DINS[29][7:0] TJ1DINS[31][7:0] TJ1DINS[33][7:0] TJ1DINS[35][7:0] TJ1DINS[37][7:0] TJ1DINS[39][7:0] TJ1DINS[41][7:0] TJ1DINS[43][7:0] TJ1DINS[45][7:0] TJ1DINS[47][7:0] TJ1DINS[49][7:0] TJ1DINS[51][7:0] TJ1DINS[53][7:0] TJ1DINS[55][7:0] TJ1DINS[57][7:0] TJ1DINS[59][7:0] TJ1DINS[61][7:0] TJ1DINS[63][7:0]
Scratch Register
Agere Systems Inc.
12 TJ1DINS[14][7:0] TJ1DINS[16][7:0] TJ1DINS[18][7:0] TJ1DINS[20][7:0] TJ1DINS[22][7:0] TJ1DINS[24][7:0] TJ1DINS[26][7:0] TJ1DINS[28][7:0] TJ1DINS[30][7:0] TJ1DINS[32][7:0] TJ1DINS[34][7:0] TJ1DINS[36][7:0] TJ1DINS[38][7:0] TJ1DINS[40][7:0] TJ1DINS[42][7:0] TJ1DINS[44][7:0] TJ1DINS[46][7:0] TJ1DINS[48][7:0] TJ1DINS[50][7:0] TJ1DINS[52][7:0] TJ1DINS[54][7:0] TJ1DINS[56][7:0] TJ1DINS[58][7:0] TJ1DINS[60][7:0] TJ1DINS[62][7:0] TJ1DINS[64][7:0] PT_SCRATCH[15:0] 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
0ADE
R/W
0ADF
R/W
0AE0
R/W
0AE1
R/W
0AE2
R/W
0AE3
R/W
0AE4
R/W
0AE5
R/W
0AE6
R/W
0AE7
R/W
0AE8
R/W
0AE9
R/W
0AEA
R/W
0AEB
R/W
0AEC
R/W
0AED
R/W
0AEE
R/W
0AEF
R/W
0AF0
R/W
0AF1
R/W
0AF2
R/W
0AF3
R/W
0AF4
R/W
0AF5
R/W
0AF6
R/W
0AF7
R/W
0AF8
R/W
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
137
Register Maps (continued)
138
Bit Number 13 DE Macrocell Version Number DE_VERSION[15:0] DE Interrupts Reserved DEINT_ATMRxAC DEINT_ATMRxS DEINT_S DLMS DEINTCH[3:0] DEINT_ATMRxF 0000 0000 0001 12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) Reserved Miscellaneous Registers Reserved Reserved Sequencer Provisioning Registers (R/W) Reserved INIT_CNTS OH_MARKER_LO OH_MARKER_HI SOH_MARKER_LO SOH_MARKER_HI
Egress/Ingress Configuration (R/W)
DE Registers
Table 40. Map of DE Registers
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
1000
RO
1001
RO
1002
RO and
DEINT_SDLRxFS
COR/W 0000 DRYESCAPE[7:0] 0020 0000
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
1003
--
1004
R/W
1005-- 100F
--
1010
R/W
SEQ_ RATE
SEQ_ MODE
0002 2210 0435 0025 0435 0025 4444 5555 6666 7777 4444 5555 6666 7777 4444
1011
R/W
1012
R/W
1013
R/W
1014
R/W
1015
R/W
1016
R/W
Tx_TS0[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS1[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS2[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS3[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS4[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS5[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS6[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS7[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS8[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS9[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS10[15:0] (Bits 15, 11, 7, 3 are reserved) Tx_TS11[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS0[15:0] (Bits 15, 11, 7, 3 are reserved)
1017
R/W
1018
R/W
1019
R/W
101A
R/W
101B
R/W
101C
R/W
101D
R/W
101E
R/W
101F
R/W
5555 6666 7777 4444
1020
R/W
1021
R/W
Agere Systems Inc.
Data Sheet May 2001
1022
R/W
Register Maps (continued)
DE Registers (continued)
Data Sheet May 2001
Table 40. Map of DE Registers (continued)
Bit Number 13 Rx_TS1[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS2[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS3[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS4[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS5[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS6[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS7[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS8[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS9[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS10[15:0] (Bits 15, 11, 7, 3 are reserved) Rx_TS11[15:0] (Bits 15, 11, 7, 3 are reserved) Transparent Mode Control Rx_OF_CTRL[15:0] (Bits 15, 13, 12, 11, 9, 8, 7, 5, 4, 3 are reserved) Tx_OF_CTRL[15:0] (Bits 15, 13, 12, 11, 9, 8, 7, 5, 4, 3 are reserved) Rx_CHCD_FM[15:0] (Bits 15, 14, 7 6 are reserved) Rx_CHAB_FM[15:0] (Bits 15, 14, 7 6 are reserved) Sequencer Cell State Reserved Reserved Reserved Reserved Reserved Reserved Ingress Payload Type and Mode Control Reserved Reserved Reserved Reserved Reserved Rx_PCTL_0[10:0] Rx_PCTL_1[10:0] Rx_PCTL_2[10:0] Rx_PCTL_3[10:0] 0700 0700 0700 0700 0000 Rx_CELL[A]_FM[9:0] Rx_CELL[B]_FM[9:0] Rx_CELL[C]_FM[9:0] Rx_CELL[D]_FM[9:0] Tx_SEQ_DISABLE[3:0] 0000 0000 0000 0000 000F 0000 0000 0000 0000 0000 12 11 10 9 8 7 6 5 4 3 2 1 0
Agere Systems Inc.
Default Value (Hex) 5555 6666 7777 4444 5555 6666 7777 4444 5555 6666 7777
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
1023
R/W
1024
R/W
1025
R/W
1026
R/W
1027
R/W
1028
R/W
1029
R/W
102A
R/W
102B
R/W
102C
R/W
102D
R/W
102E
R/W
102F
R/W
1030
R/W
1031
R/W
1032
R/W
1033
R/W
1034
R/W
1035
R/W
1036
R/W
1037-- 103F
--
1040
R/W
1041
R/W
1042
R/W
1043
R/W
1044-- 107F
--
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
139
Register Maps (continued)
140
Bit Number 13 ATM Framer Registers Idle Cell Match Mask ATM_IDM_0[31:16] ATM_IDM_0[15:0] ATM_IDM_1[31:16] ATM_IDM_1[15:0] ATM_IDM_2[31:16] ATM_IDM_2[15:0] ATM_IDM_3[31:16] ATM_IDM_3[15:0] Idle Cell Register ATM_IDC_0[31:16] ATM_IDC_0[15:0] ATM_IDC_1[31:16] ATM_IDC_1[15:0] ATM_IDC_2[31:16] ATM_IDC_2[15:0] ATM_IDC_3[31:16] ATM_IDC_3[15:0] Unassigned Cell Match Mask ATM_USM_0[31:16] ATM_USM_0[15:0] ATM_USM_1[31:16] ATM_USM_1[15:0] ATM_USM_2[31:16] ATM_USM_2[15:0] ATM_USM_3[31:16] ATM_USM_3[15:0] Unassigned Cell Register ATM_USG_0[31:16] ATM_USG_0[15:0] ATM_USG_1[31:16] ATM_USG_1[15:0] ATM_USG_2[31:16] 0000 0000 0000 0000 0000 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 0000 0001 0000 0001 0000 0001 0000 0001 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex)
DE Registers (continued)
Table 40. Map of DE Registers (continued)
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
1080
R/W
1081
R/W
1082
R/W
1083
R/W
1084
R/W
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
1085
R/W
1086
R/W
1087
R/W
1088
R/W
1089
R/W
108A
R/W
108B
R/W
108C
R/W
108D
R/W
108E
R/W
108F
R/W
1090
R/W
1091
R/W
1092
R/W
1093
R/W
1094
R/W
1095
R/W
1096
R/W
1097
R/W
1098
R/W
1099
R/W
109A
R/W
109B
R/W
Agere Systems Inc.
Data Sheet May 2001
109C
R/W
Register Maps (continued)
DE Registers (continued)
Data Sheet May 2001
Table 40. Map of DE Registers (continued)
Bit Number 13 ATM_USG_2[15:0] ATM_USG_3[31:16] ATM_USG_3[15:0] ATM Scrambler Framer State Reserved Reserved Reserved Reserved ATM Frame Control Registers ATM Receive Configuration ATM_X43[11:0] ATM_X31[11:0] ATM_X31VW[11:0] ATM_X31XY[11:0] Reserved Reserved Reserved Reserved Reserved ATM Transmit Control Registers PPP Attach PPP_Tx_CHAN[0][15:0] PPP_Tx_CHAN[1][15:0] PPP_Tx_CHAN[2][15:0] PPP_Tx_CHAN[3][15:0] Reserved Egress Payload Type and Mode Control Reserved Reserved Reserved Reserved Reserved Tx_PCTL_[0][10:0] Tx_PCTL_[1][10:0] Tx_PCTL_[2][10:0] Tx_PCTL_[3][10:0] 0700 0700 0700 0700 0000 0000 0000 0000 0000 0000 ATM_X31Z[5:0] FS_INT_MASK[3:0] SS_INT_MASK[3:0] ATM_Rx_DEBUG_REG[5:0] 01C6 01C8 0210 0418 0018 000F 000F 003C 0000 ATM_ST_0[3:0] ATM_ST_1[3:0] ATM_ST_2[3:0] ATM_ST_3[3:0] 0000 0000 0000 0000 12 11 10 9 8 7 6 5 4 3 2 1 0
Agere Systems Inc.
Default Value (Hex) 0000 0000 0000
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
109D
R/W
109E
R/W
109F
R/W
10A0
RO
10A1
RO
10A2
RO
10A3
RO
10A4
R/W
Reserved
10A5
R/W
Reserved
10A6
R/W
Reserved
10A7
R/W
Reserved
10A8
R/W
10A9
R/W
10AA
R/W
10AB
R/W
10AC-- 10AF
--
10B0
R/W
10B1
R/W
10B2
R/W
10B3
R/W
10B4-- 10DF
--
10E0
R/W
10E1
R/W
10E2
R/W
10E3
R/W
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
10E4-- 10EF
--
141
Register Maps (continued)
142
Bit Number 13 PPP Detach PPP_Rx_HDR0[0][15:0] PPP_Rx_HDR0[1][15:0] PPP_Rx_HDR0[2][15:0] PPP_Rx_HDR0[3][15:0] PPP_Rx_HDR0[4][15:0] PPP_Rx_HDR0[5][15:0] PPP_Rx_HDR0[6][15:0] PPP_Rx_HDR0[7][15:0] PPP_Rx_HDR0[8][15:0] PPP_Rx_HDR0[9][15:0] PPP_Rx_HDR0[10][15:0] PPP_Rx_HDR0[11][15:0] PPP_Rx_CHK_CH[0][15:0] PPP_Rx_CHK_CH[1][15:0] PPP_Rx_CHK_CH[2][15:0] PPP_Rx_CHK_CH[3][15:0] ATM/HDLC/SDL Framer Condition--Counter 1 (PMRST Update) PM_FC1_0[27:16] PM_FC1_0[15:0] PM_FC1_1[27:16] PM_FC1_1[15:0] PM_FC1_2[27:16] PM_FC1_2[15:0] PM_FC1_3[27:16] PM_FC1_3[15:0] ATM/HDLC/SDL Framer Condition--Counter 2 (PMRST Update) PM_FC2_0[27:16] PM_FC2_0[15:0] PM_FC2_1[27:16] PM_FC2_1[15:0] PM_FC2_2[27:16] PM_FC2_2[15:0] PM_FC2_3[27:16] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 C001 C002 C004 C008 12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex)
DE Registers (continued)
Table 40. Map of DE Registers (continued)
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
10F0
R/W
10F1
R/W
10F2
R/W
10F3
R/W
10F4
R/W
10F5
R/W
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
10F6
R/W
10F7
R/W
10F8
R/W
10F9
R/W
10FA
R/W
10FB
R/W
10FC
R/W
10FD
R/W
10FE
R/W
10FF
R/W
1100
RO
Reserved
1101
RO
1102
RO
Reserved
1103
RO
1104
RO
Reserved
1105
RO
1106
RO
Reserved
1107
RO
1108
RO
Reserved
1109
RO
110A
RO
Reserved
110B
RO
110C
RO
Reserved
110D
RO
Agere Systems Inc.
Data Sheet May 2001
110E
RO
Reserved
Register Maps (continued)
DE Registers (continued)
Data Sheet May 2001
Table 40. Map of DE Registers (continued)
Bit Number 13 PM_FC2_3[15:0] CRC Checker--Bad Packet Counter (PMRST Update) PM_BPC_0[27:16] PM_BPC_0[15:0] PM_BPC_1[27:16] PM_BPC_1[15:0] PM_BPC_2[27:16] PM_BPC_2[15:0] PM_BPC_3[27:16] PM_BPC_3[15:0] PPP Detach--Mismatched Header Counter (PMRST Update) PM_MHC_0[27:16] PM_MHC_0[15:0] PM_MHC_1[27:16] PM_MHC_1[15:0] PM_MHC_2[27:16] PM_MHC_2[15:0] PM_MHC_3[27:16] PM_MHC_3[15:0] Receive Good Packet/Cell Counter (PMRST Update) PM_GPC_Rx_0[27:16] PM_GPC_Rx_0[15:0] PM_GPC_Rx_1[27:16] PM_GPC_Rx_1[15:0] PM_GPC_Rx_2[27:16] PM_GPC_Rx_2[15:0] PM_GPC_Rx_3[27:16] PM_GPC_Rx_3[15:0] Transmit Good Packet/Cell Counter (PMRST Update) PM_GPC_Tx_0[27:16] PM_GPC_Tx_0[15:0] PM_GPC_Tx_1[27:16] PM_GPC_Tx_1[15:0] PM_GPC_Tx_2[27:16] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 12 11 10 9 8 7 6 5 4 3 2 1 0
Agere Systems Inc.
Default Value (Hex) 0000
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
110F
RO
1110
RO
Reserved
1111
RO
1112
RO
Reserved
1113
RO
1114
RO
Reserved
1115
RO
1116
RO
Reserved
1117
RO
1118
RO
Reserved
1119
RO
111A
RO
Reserved
111B
RO
111C
RO
Reserved
111D
RO
111E
RO
Reserved
111F
RO
1120
RO
Reserved
1121
RO
1122
RO
Reserved
1123
RO
1124
RO
Reserved
1125
RO
1126
RO
Reserved
1127
RO
1128
RO
Reserved
1129
RO
112A
RO
Reserved
112B
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
143
112C
RO
Reserved
Register Maps (continued)
144
Bit Number 13 PM_GPC_Tx_2[15:0] PM_GPC_Tx_3[27:16] PM_GPC_Tx_3[15:0] Reserved Interrupts and Masks for Packet Counters Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
ATM Transmit Registers
DE Registers (continued)
Table 40. Map of DE Registers (continued)
Address (Hex) 12 11 10 9 8 7 6 5 4 3 2 1 0
(RO), (R/W), (WO), (COR/W)
15
14
Default Value (Hex) 0000 0000 0000 0000
112D
RO
112E
RO
Reserved
112F
RO
1130-- 117F
RO
1180
R/W
DEDINTM[0] DEDINT[0] DEDINTM[1] DEDINT[1] DEDINTM[2] DEDINT[2] DEDINTM[3] DEDINT[3]
001F 0000 001F 0000 001F 0000 001F 0000 0000
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
1181
COR/W
1182
R/W
1183
COR/W
1184
R/W
1185
COR/W
1186
R/W
1187
COR/W
1188-- 11FF NULLCELL1[0][15:0] NULLCELL1[1][15:0] NULLCELL1[2][15:0] NULLCELL1[3][15:0] Reserved NULLCELL2[0][15:0] NULLCELL2[1][15:0] NULLCELL2[2][15:0] NULLCELL2[3][15:0] Reserved Reserved Reserved
--
1200
R/W
0000 0000 0000 0000 0000 0001 0001 0001 0001 0000 ATM_HEADER_ERROR[7:0] 0000
1201
R/W
1202
R/W
1203
R/W
1204-- 120F
--
1210
R/W
1211
R/W
1212
R/W
1213
R/W
1214-- 12EF
--
12F0
R/W
Agere Systems Inc.
Data Sheet May 2001
12F1-- 13FF
--
0000
Register Maps (continued)
DE Registers (continued)
Data Sheet May 2001
Table 40. Map of DE Registers (continued)
Bit Number 13
SDL Receive Registers
Agere Systems Inc.
12 11 10 9 8 7 6 5 4 3 2 1 0 Default Value (Hex) Reserved Reserved Reserved Reserved Reserved SDL_AMM1[0][15:0] SDL_AMM1[1][15:0] SDL_AMM1[2][15:0] SDL_AMM1[3][15:0] Reserved SDL_AMM2[0][15:0] SDL_AMM2[1][15:0] SDL_AMM2[2][15:0] SDL_AMM2[3][15:0] Reserved SDL_AMM3[0][15:0] SDL_AMM3[1][15:0] SDL_AMM3[2][15:0] SDL_AMM3[3][15:0] Reserved SDL_BMM1[0][15:0] SDL_BMM1[1][15:0] SDL_BMM1[2][15:0] SDL_BMM1[3][15:0] Reserved SDL_BMM2[0][15:0] SDL_BMM2[1][15:0] SDL_BMM2[2][15:0] SDL_BMM2[3][15:0] SDL_ST[0][3:0] SDL_ST[1][3:0] SDL_ST[2][3:0] SDL_ST[3][3:0] 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Address (Hex)
(RO), (R/W), (WO), (COR/W)
15
14
1400
RO
1401
RO
1402
RO
1403
RO
1404-- 146F
--
1470
RO
1471
RO
1472
RO
1473
RO
1474-- 147F
--
1480
RO
1481
RO
1482
RO
1483
RO
1484-- 148F
--
1490
RO
1491
RO
1492
RO
1493
RO
1494-- 149F
--
14A0
RO
14A1
RO
14A2
RO
14A3
RO
14A4-- 14AF
--
14B0
RO
14B1
RO
14B2
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
145
14B3
RO
Register Maps (continued)
146
Bit Number 13 Reserved SDL_BMM[0]_3[15:0] SDL_BMM[1]_3[15:0] SDL_BMM[2]_3[15:0] SDL_BMM[3]_3[15:0] Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
SDL Transmit Registers
DE Registers (continued)
Table 40. Map of DE Registers (continued)
Address (Hex) 12 11 10 9 8 7 6 5 4 3 2 1 0
(RO), (R/W), (WO), (COR/W)
15
14
Default Value (Hex) 0000 0000 0000 0000 0000 0000
14B4-- 14BF
--
14C0
RO
14C1
RO
14C2
RO
14C3
RO
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
14C4-- 14CF
--
14D0
R/W
SDLINTM[0][7:0] (Bit 3 is reserved) SDLINTM[1][7:0] (Bit 3 is reserved) SDLINTM[2][7:0] (Bit 3 is reserved) SDLINTM[3][7:0] (Bit 3 is reserved)
00FF 00FF 00FF 00FF 0000
14D1
R/W
14D2
R/W
14D3
R/W
14D4-- 14DF
--
14E0
R/W
SDLINT[0][7:0] (Bit 3 is reserved) SDLINT[1][7:0] (Bit 3 is reserved) SDLINT[2][7:0] (Bit 3 is reserved) SDLINT[3][7:0] (Bit 3 is reserved)
0000 0000 0000 0000 0000 SDL_DELTA[6:0] 0001 0000
14E1
R/W
14E2
R/W
14E3
R/W
14E4-- 14EF
--
14F0
R/W
14F1-- 15FF
--
1600
R/W
SDLFI_MSG1[15:0] SDLFI_MSG2[15:0] SDLFI_MSG3[15:0] Reserved SDLFI_INT[15:0] Reserved Reserved Reserved SDLHE[1:0] SDLPE[1:0] SDLSC
SDLFDO SDLSST MS SDLMSI SDLCHID[1:0]
0000 0000 0000 0000 0008 8000 0000 SDLECID[1:0] 0000
1601
R/W
1602
R/W
1603
R/W
SDLMTB
1604
R/W
1605
R/W
SDLSMIE
1606
R/W
Agere Systems Inc.
Data Sheet May 2001
1607
R/W
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions
Core Registers
This section gives a brief description of each register bit and its functionality. All algorithms are described in the main text of the document. The abbreviations after each register indicate if the register is read only (RO), read/ write (R/W), write only (WO), or clear-on-read or clear-on-write (COR/W). Required Provisioning Sequence and Clocks 0x indicates a hexadecimal value in the Reset Default column. Otherwise, the entry is binary. This is true for every register table in the document. Table 41. Register 0x0000: Device Version (RO) Reset default of register = 0x0100. Address (Hex) 0000 Bit # 15--8 7--0
1. 0x02 for version 1A.
Name
Function
Reset Default 0x011 0x00
DEVICE_VERSION[7:0] Device Version Number. Device version register will change each time the device is changed. -- Reserved.
Table 42. Registers 0x0001--0x0005: Device Name (RO) Reset default of each register is shown below. Address (Hex) 0001 0002 0003 0004 0005 Bit # 15--0 15--0 15--0 15--0 15--0 Name ASCII_NAME_TD ASCII_NAME_AT ASCII_NAME_04 ASCII_NAME_2G ASCII_NAME_5CR Function Device ASCII Name. Value = T, D. Device ASCII Name. Value = A, T. Device ASCII Name. Value = 0, 4. Device ASCII Name. Value = 2, G. Device ASCII Name. Value = 5, CR. Reset Default 0x5444 0x4154 0x3034 0x3247 0x350D
Agere Systems Inc.
147
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
Core Registers (continued)
Table 43. Register 0x0008: Composite Interrupts (RO or COR/W) Reset default of register = 0x0000. Address (Hex) 0008 Bit # 15 Name PMRSTI Function Performance Monitor Reset Interrupt. Active-high signal indicating a 1 second event has occurred. This bit is COR/W. Reserved. These bits must be written to their reset default value (000). General-Purpose Interrupt. Signal indicating the associated input is active. When the GPIO are outputs, this signal will be forced low. These interrupts are COR/W when the interrupt is programmed to the positive edge mode; otherwise, this is a readonly (RO) location. UTOPIA Composite Interrupt. Active-high signal indicating an unmasked delta or event is active in the UTOPIA block. This bit is RO. Data Engine Composite Interrupt. Active-high signal indicating an unmasked delta or event is active in the data engine block. This bit is RO. Reserved. These bits must be written to their reset default value (0000). Path Terminator Composite Interrupt. Active-high signal indicating an unmasked delta or event is active in the path terminator block. This bit is RO. Overhead Processor Composite Interrupt. Active-high signal indicating an unmasked delta or event is active in the overhead processor block. This bit is RO. Reset Default 0
14--12 11--8
-- GPIO[3:0]I
000 0x0
7
UTI
0
6
DEI
0
5--2 1
-- PTI
0000 0
0
OHPI
0
Table 44. Register 0x000A: GPIO Input (RO) Reset default of register = 0x000x (x not determined). Address (Hex) 000A Bit # 15--4 3--0 Name -- Function Reset Default 0x000 Pin Value
Reserved. These bits must be written to their reset default value (0x000). GPIO[3:0]_INPUT_VALUE General-Purpose Input Value. These are the logical values of the GPIO[3:0] I/O pins.
148
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
Core Registers (continued)
Table 45. Register 0x000C: Block Interrupt Masks (R/W) Reset default of register = 0xFFFF. Address (Hex) 000C Bit # 15 Name PMRSTM Function Performance Monitor Reset Mask. When set to 1, the associated composite interrupt bit will be inhibited (masked) from contributing to the interrupt pin (INT). Reserved. These bits must be written to their reset default value (111). General-Purpose Interrupt Mask. When set to 1, the associated composite interrupt bits will be inhibited (masked) from contributing to the interrupt pin (INT). UTOPIA Composite Interrupt Mask. When set to 1, the associated composite interrupt bit will be inhibited (masked) from contributing to the interrupt pin (INT). Data Engine Composite Interrupt Mask. When set to 1, the associated composite interrupt bit will be inhibited (masked) from contributing to the interrupt pin (INT). Reserved. These bits must be written to their reset default value (1111). Path Terminator Composite Interrupt Mask. When set to 1, the associated composite interrupt bit will be inhibited (masked) from contributing to the interrupt pin (INT). Overhead Processor Composite Interrupt Mask. When set to 1, the associated composite interrupt bit will be inhibited (masked) from contributing to the interrupt pin (INT). Reset Default 1
14--12 11--8
-- GPIO[3:0]IM
111 0xF
7
UTIM
1
6
DEIM
1
5--2 1
-- PTIM
1111 1
0
OHPIM
1
Table 46. Register 0x000E: Core Resets (WO) Address (Hex) 000E Bit # 15--8 7 Name -- PMRST Function Reserved. Performance Monitor Reset. When this bit is set to 1, the PMRST signal goes high. The register will automatically be reset to 0, and the PMRST signal will go low after 500 ms. Reserved. Software Reset. When a binary value of 101 is written to this register, it will create a software reset of the device. This reset has the same effect as the hardware reset. All microprocessor registers are reset to their default states, and all internal data path state machines are reset. Reset Default NA NA
6--3 2--0
-- SWRST
NA NA
Agere Systems Inc.
149
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
Core Registers (continued)
Table 47. Register 0x000F: GPIO Output (R/W) Reset default of register = 0x0000. Address (Hex) 000F Bit # 15--4 3--0 Name -- Function Reset Default 0x000 0x0
Reserved. These bits must be written to their reset default value (0x000). GPIO[3:0]_OUTPUT_VALUE General-Purpose Output Values. The value written into these bits will appear on the GPIO[3:0] pins.
Provisioning Registers Table 48. Register 0x0010: Line Provisioning/Mode (R/W) Reset default of register = 0x1070. Address (Hex) 0010 Bit # 15--13 12 Name -- POF_POS Function Reserved. These bits must be written to their reset default value (000). Packet/ATM Over Fiber/SONET. 0 = packet or ATM over fiber (POF); 1 = packet or ATM over SONET (POS). Reserved. These bits must be written to their reset default value (00). Performance Monitoring Mode. 00 or 10 = PMRST comes from external pin. 01 = PMRST comes from internal 1-second counter. 11 = PMRST is software controlled. SDH or SONET Mode. 1 = SDH; 0 = SONET. Clear-on-Read or Clear-on-Write Control. This bit sets the functionality of the COR/W registers. 1 = COR. Clear on read; read register to clear. 0 = COW. Clear on write; write 1 to clear. COW mode will clear bits to which a 1 is written. Bits written to 0 are not cleared. PLL Mode. Control for STS-48/STM-16 mode only. This bit controls the transmit line clock PLL. For STS-48/STM-16 contra-clocking mode, this PLL must be active, i.e., the bit = 0. 1 = PLL off (inactive) 0 = PLL on (active) STS-48/STM-16 Control. 1 = STS-48/STM-16 mode; 0 = STS-3/STS-12 (STM-1/STM-4) mode. STS-12/STS-3 (STM-4/STM-1) Mode Control. The only values permitted are the following: 1111 = STS-12/STM-4 0000 = STS-3/STM-1 Reset Default 000 1
11--10 9--8
-- PMMODE[1:0]
00 00
7 6
SDH/SONET COR/W
0 1
5
PLL_MODE
1
4 3--0
STS48 STS12[A--D]
1 0x0
150
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
Core Registers (continued)
Provisioning Registers (continued) Table 49. Register 0x0011: Channel (A--D) Control (R/W) Reset default of register = 0x0000. Address (Hex) 0011 Bit # 15 Name EQ_CH_A Function Equip Channel A. 1 = enable; 0 = disable, i.e., turns off clock in Rx direction, except in the STS-48/STM-16 mode. This function is valid only for STS-12/STM-4 and STS-3/STM-1 modes (no effect in Tx direction). Reserved. These bits must be written to their reset default value (000). Equip Channel B. 1 = enable; 0 = disable, i.e., turns off clock in Rx direction, except in the STS-48/STM-16 mode. This function is valid only for STS-12/STM-4 and STS-3/STM-1 modes (no effect in Tx direction). Reserved. These bits must be written to their reset default value (000). Equip Channel C. 1 = enable; 0 = disable, i.e., turns off clock in Rx direction, except in the STS-48/STM-16 mode. This function is valid only for STS-12/STM-4 and STS-3/STM-1 modes (no effect in Tx direction). Reserved. These bits must be written to their reset default value (000). Equip Channel D. 1 = enable; 0 = disable, i.e., turns off clock in Rx direction, except in the STS-48/STM-16 mode. This function is valid only for STS-12/STM-4 and OSTS-3/STM-1 modes (no effect in Tx direction). Reserved. These bits must be written to their reset default value (000). Reset Default 0
14--12 11
-- EQ_CH_B
000 0
10--8 7
-- EQ_CH_C
000 0
6--4 3
-- EQ_CH_D
000 0
2--0
--
000
Table 50. Register 0x0012: Loopback Control (R/W) Reset default of register = 0x0000. Address (Hex) 0012 Bit # 15--12 11--8 7--4 3--0 Name LOOPBACK[3:0]_ CH_A LOOPBACK[3:0]_ CH_B LOOPBACK[3:0]_ CH_C LOOPBACK[3:0]_ CH_D Function Loopback Control. Only the following combinations are valid: 0000 = no loopbacks 0001 = SONET facility loopback 0010 = SONET terminal loopback 0100 = UTOPIA far-end loopback 1000 = UTOPIA near-end loopback SONET facility loopback is only available in STS-3/ STM-1 and STS-12/STM-4 modes. Reset Default 0x0 0x0 0x0 0x0
Agere Systems Inc.
151
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
Core Registers (continued)
Provisioning Registers (continued) Table 51. Register 0x0013: GPIO Mode (R/W) Reset default of register = 0x0000. Address (Hex) 0013 Bit # 15 Name PMRST_I/O_CTRL Function Reset Default 0 000 0x0
PMRST I/O Control. This bit is set to 1 to make PMRST an output. 14--12 -- Reserved. These bits must be written to their reset default value (000). 11--8 GPIO[3:0]_INTERRUPT_ GPIO Interrupt Active State. ACTIVE_H/L 0 = report received value unchanged (level = input pin value, positive edge = 1 when signal rises). 1 = invert received value (level = invert input pin value, positive edge = 0 when detected). GPIO[3:0]_INTERRUPT_ GPIO Interrupt Type. 0 = positive edge; 1 = level. LEVEL/EDGE GPIO[3:0]_DIRECTION_ GPIO Direction Control. 0 = input; 1 = output. I/O
7--4 3--0
0x0 0x0
Table 52. Registers 0x0014, 0x0015: GPIO Output Configuration Reset default of registers = 0x0000. Address (Hex) 0014 Bit # -- 15--9 8 7--1 0 0015 -- 15--9 8 7--1 0 Name GPIO[1:0]_OC -- GPIO[1]_OC -- GPIO[0]_OC GPIO[3:2]_OC -- GPIO[3]_OC -- GPIO[2]_OC Function GPIO[1:0] Output Configuration. Reserved. These bits must be written to their reset default value (0000000). GPIO[1] Output Configuration. Set this bit to 1 to activate the output of the corresponding GPIO pin. Reserved. These bits must be written to their reset default value (0000000). GPIO[0] Output Configuration. Set this bit to 1 to activate the output of the corresponding GPIO pin. GPIO[3:2] Output Configuration. Reserved. These bits must be written to their reset default value (0000000). GPIO[3] Output Configuration. Set this bit to 1 to activate the output of the corresponding GPIO pin. Reserved. These bits must be written to their reset default value (0000000). GPIO[2] Output Configuration. Set this bit to 1 to activate the output of the corresponding GPIO pin. Reset Default 0x0000 0000 000 0 0000 000 0 0x0000 0000 000 0 0000 000 0
152
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
Core Registers (continued)
Provisioning Registers (continued) Table 53. Register 0x001F: Scratch (R/W) Reset default of register = 0x0000. Address (Hex) 001F Bit # 15--0 Name Function Reset Default 0x0000
CORE_SCRATCH[15:0] Core Scratch Register. A read/write register used to verify functionality of the microprocessor interface. No internal action will occur when written data is written to this location.
Agere Systems Inc.
153
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
UT Registers
This section gives a brief description of each register bit and its functionality. All algorithms are described in the main text of the document. The abbreviations after each register indicate if the register is read only (RO), read/write (R/W), write only (WO), or clear-on-read or clear-on-write (COR/W). 0x indicates a hexadecimal value in the Reset Default column. Otherwise, the entry is binary. This is true for every register table in the document. Version Control Table 54. Register 0x0200: UT Macrocell Version Number (RO) Reset default of register = 0x0000. Address (Hex) 0200 Bit # 15--8 7--0 Name -- UT_VERSION[7:0] Function Reserved. These bits must be written to their reset default value (0x00). UT Macrocell Version Number. The version of the macrocell will increment each time a change occurs to the macrocell functionality. Reset Default 0x00 0x00
Interrupt Table 55. Register 0x0201: UT Interrupt (RO) Reset default of register = 0x0000. Note: These registers are cleared by accessing registers 0x0202, 0x0203, 0x0204, 0x0205. Address (Hex) 0201 Bit # 15--4 3 Name -- UT_INT[D] Function Reserved. These bits must be written to their reset default value (0x000). UT Interrupt for Channel D. If this bit is set to 1, it indicates one of the interrupt conditions for channel D occurred. UT Interrupt for Channel C. If this bit is set to 1, it indicates one of the interrupt conditions for channel C occurred. UT Interrupt for Channel B. If this bit is set to 1, it indicates one of the interrupt conditions for channel B occurred. UT Interrupt for Channel A. If this bit is set to 1, it indicates one of the interrupt conditions for channel A occurred. Reset Default 0x000 0x0
2
UT_INT[C]
1
UT_INT[B]
0
UT_INT[A]
154
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
UT Registers (continued)
Delta and Event Parameters (COR) Table 56. Registers 0x0202, 0x0203, 0x0204, 0x0205: Channel [A--D] (COR) Reset default of registers = 0x0000. Address (Hex) 0202, 0203, 0204, 0205 Bit # 15--4 3 Name -- FIFO_OVERFLOW_ Tx[A--D] FIFO_UNDERFLOW_ Tx[A--D] FIFO_OVERFLOW_ Rx[A--D] PARITY_ERROR_ Tx[A--D] Function Reserved. These bits must be written to their reset default value (0x000). FIFO Overflow Transmit Channel [A--D]. If set, indicates that an overflow occurred in the Tx FIFO of channel [A--D]. FIFO Underflow Transmit Channel [A--D]. If set, indicates that an underflow occurred in the Tx FIFO of channel [A--D]. FIFO Overflow Receive Channel [A--D]. If set, indicates that an overflow occurred in the Rx FIFO of channel [A--D]. Parity Error Transmit Channel [A--D]. If set, indicates that a parity error was detected on the Tx channel of channel [A--D]. Reset Default 0x000 0x0
2
1
0
Agere Systems Inc.
155
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
UT Registers (continued)
Interrupt Mask Parameters (R/W) Table 57. Register 0x0206: Interrupt Mask (R/W) Reset default of register = 0x000F. Address (Hex) 0206 Bit # 15--4 3 2 1 0 Name -- INTM[D] INTM[C] INTM[B] INTM[A] Function Reserved. These bits must be written to their reset default value (0x000). Interrupt Mask D. If set to 1, masks any interrupts from channel D. Interrupt Mask C. If set to 1, masks any interrupts from channel C. Interrupt Mask B. If set to 1, masks any interrupts from channel B. Interrupt Mask A. If set to 1, masks any interrupts from channel A. Reset Default 0x000 0xF
Table 58. Registers 0x0207, 0x0208, 0x0209, 0x020A: Interrupt Mask--Channel [A--D] (R/W) Reset default of registers = 0x000F. Address (Hex) 0207, 0208, 0209, 020A Bit # 15--4 3 2 1 0 Name --
FIFO_OVERFLOW_Tx_ MASK[A--D] FIFO_UNDERFLOW_Tx_ MASK[A--D] FIFO_OVERFLOW_Rx_ MASK[A--D]
Function Reserved. These bits must be written to their reset default value (0x000). FIFO Overflow Transmit Mask [A--D]. If set, masks this interrupt from setting Int[A--D]. FIFO Underflow Transmit Mask [A--D]. If set, masks this interrupt from setting Int[A--D]. FIFO Overflow Receive Mask [A--D]. If set, masks this interrupt from setting Int[A--D]. Parity Error Transmit Mask [A--D]. If set, masks this interrupt from setting Int[A--D].
Reset Default 0x000 0xF
PARITY_ERROR_Tx_ MASK[A--D]
Error Counters in PMRST Mode (RO) Table 59. Register 0x020B: Channel [A--D] Error Count in PMRST Mode (RO) Reset default of register = 0x0000. Address (Hex) 020B--020E Bit # 15--0 Name PMRST_PECTx[A--D] Function PMRST Parity Error Count Transmit Channel [A--D]. Counts the number of parity errors that occur for Tx channel [A--D], based upon the PMRST interval. Reset Default 0x0000
156
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
UT Registers (continued)
UT Provisioning Registers (R/W) The fields of the UT provisioning registers in Table 61--Table 64 are summarized in Table 60. Following the table are the provisioning registers for the four channels. Note: The default value depends on the channel. Defaults are as follows: Channel A = 00000 Channel B = 00001 Channel C = 00010 Channel D = 00011 Table 60. Fields of the Provisioning Registers Field Name POLLING_ENB_Rx POLLING_ENB_Tx RxADDR_[4:0] TxADDR_[4:0] CLOCK_MODE_Rx PARITY_Rx PARITY_Tx ATM_SIZE_Rx ATM_SIZE_Tx TRAFFIC_TYPE_Rx TRAFFIC_TYPE_Tx UTOPIA_MODE_Rx UTOPIA_MODE_Tx Function Enabled Disabled MPHY Address Value Source Sink Odd Even 52 Bytes 53 Bytes ATM Cells Packets Disabled (Idle)* U2 U2+ U3, 8-bit U3, 32-bit U3+, 8-bit U3+, 32-bit Invalid Bit Value Bit 15 = 1 Bit 15 = 0 Bits [12:8] Bit 6 = 1 Bit 6 =0 Bit 5 = 1 Bit 5 = 0 Bit 4 = 1 Bit 4 = 0 Bit 3 = 1 Bit 3 = 0 Bits[2:0] = 000 Bits[2:0] = 001 Bits[2:0] = 010 Bits[2:0] = 011 Bits[2:0] = 100 Bits[2:0] = 101 Bits[2:0] = 110 Bits[2:0] = 111 Default 0 See note above. 0 1 0 0 000
*The value 000 for UTOPIA_MODE_Rx bits places the corresponding UTOPIA outputs in the high-impedance state.
Agere Systems Inc.
157
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
UT Registers (continued)
UT Provisioning Registers (R/W) (continued) Table 61. Registers 0x020F, 0x0213, 0x0217, 0x021B: Channel [A--D] Receive Provisioning Register (R/W) Reset default of register 0x020F = 0x0020. Reset default of register 0x0213 = 0x0120. Reset default of register 0x0217 = 0x0220. Reset default of register 0x021B = 0x0320. Address (Hex) 020F, 0213, 0217, 021B Bit # 15 14--13 12--8 Name POLLING_ENB_Rx [A--D] -- RxADDR_A[4:0] RxADDR_B[4:0] RxADDR_C[4:0] RxADDR_D[4:0] -- CLOCK_MODE_Rx [A--D] Function Polling Enable Receive Channel [A--D]. If set to 1, receive polling mode is enabled. Reserved. These bits must be written to their reset default value (00). Polling Receive Address Channel [A--D]. Receive polling address. Reset Default 0 00 00000 00001 00010 00011 0 0
7 6
Reserved. This bit must be written to its reset default value (0). Clock Mode Receive Channel [A--D]. Defines if the RxCLK[A--D] is sourced or sunk. If this bit = 1, the clock is sourced, and then (1) the corresponding Tx clock is used as RxCLK[A--D], and (2) this clock is also sent out of the device via RxCLK[A--D]. If this bit = 0, CLOCK_MODE_Rx[A--D] is sunk, and then RxCLK[A--D] acts as an input. Default is sink. Parity Receive Channel [A--D]. Defines if odd (bit = 1) or even (bit = 0) parity is generated for the data transmitted across the UTOPIA PHY Rx interface. Default is odd. ATM Packet Size Receive Channel [A--D]. Defines how many bytes are received per ATM cell. Default is 53 bytes. Valid only when traffic type is ATM cells. Page 86 and page 87 give details of the function of this bit. 0 = standard 53-byte (also 54-byte and 56-byte) ATM cell modes. 1 = 52-byte ATM cell mode (HEC omitted). Traffic Type Receive Channel [A--D]. Configures channel to receive either ATM cells or packets. Bit Value 0 1 Traffic Type packets (default) ATM cells
5
PARITY_Rx[A--D]
1
4
ATM_SIZE_Rx[A--D]
0
3
TRAFFIC_TYPE_Rx [A--D]
0
158
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
UT Registers (continued)
UT Provisioning Registers (R/W) (continued) Table 61. Registers 0x020F, 0x0213, 0x0217, 0x021B: Channel [A--D] Receive Provisioning Register (R/W) (continued) Reset default of register 0x020F = 0x0020. Reset default of register 0x0213 = 0x0120. Reset default of register 0x0217 = 0x0220. Reset default of register 0x021B = 0x0320. Address (Hex) 020F, 0213, 0217, 021B Bit # 2--0 Name
UTOPIA_MODE_Rx
Function UTOPIA Mode Receive Channel [A--D]. Configures the Rx channel mode. Mode disabled (idle)* U2 U2+ U3, 8-bit U3, 32-bit U3+, 8-bit U3+, 32-bit invalid Bit Value bits[2:0] = 000 bits[2:0] = 001 bits[2:0] = 010 bits[2:0] = 011 bits[2:0] = 100 bits[2:0] = 101 bits[2:0] = 110 bits[2:0] = 111
Reset Default 000
[A--D][2:0]
U3 configuration also requires the appropriate setting of register 0x0225 (PA response) to be set for a two-cycle response.
*The value 000 for these bits places the corresponding UTOPIA outputs in the high-impedance state.
Table 62. Registers 0x0210, 0x0214, 0x0218, 0x021C: Channel [A--D] Transmit Provisioning Register (R/W) Reset default of register 0x0210 = 0x0000. Reset default of register 0x0214 = 0x0120. Reset default of register 0x0218 = 0x0220. Reset default of register 0x021C = 0x0320. Address (Hex) 0210, 0214, 0218, 021C Bit # 15 14--13 12--8 Name POLLING_ENB_Tx [A--D] -- TxADDR_A[4:0] TxADDR_B[4:0] TxADDR_C[4:0] TxADDR_D[4:0] -- Function Polling Enable Transmit Channel [A--D]. If set, transmit polling mode is enabled. Reserved. These bits must be written to their reset default value (00). Polling Transmit Address Channel [A--D]. Transmit polling address. Reset Default 0 00 00000 00001 00010 00011 00
7--6
Reserved. These bits must be written to their reset default value (00).
Agere Systems Inc.
159
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
UT Registers (continued)
UT Provisioning Registers (R/W) (continued) Table 62. Registers 0x0210, 0x0214, 0x0218, 0x021C: Channel [A--D] Transmit Provisioning Register (R/W) (continued) Reset default of register 0x0210 = 0x0000. Reset default of register 0x0214 = 0x0120. Reset default of register 0x0218 = 0x0220. Reset default of register 0x021C = 0x0320. Address (Hex) 0210, 0214, 0218, 021C Bit # 5 Name PARITY_Tx[A] PARITY_Tx[B--D] Function Parity Transmit Channel [A--D]. Defines if odd (bit = 1) or even (bit = 0) parity is generated for the data transmitted across the UTOPIA PHY Tx interface. Default is even for channel A and odd for channels B, C, and D. ATM Packet Size Transmit Channel [A--D]. Defines how many bytes are transmitted per ATM cell. Default is 53 bytes. Valid only when traffic type is ATM cells. Page 86 and page 87 give details of the function of this bit. 0 = standard 53-byte (also 54-byte and 56-byte) ATM cell modes. 1 = 52-byte ATM cell mode (HEC omitted). Traffic Type Transmit Channel [A--D]. Configures channel to transmit either ATM cells or packets. Bit Value Traffic Type 0 packets (default) 1 ATM cells UTOPIA Mode Transmit Channel [A--D]. Configures the Tx channel mode. Mode disabled (idle) U2 U2+ U3, 8-bit U3, 32-bit U3+, 8-bit U3+, 32-bit invalid Bit Value bits[2:0] = 000 bits[2:0] = 001 bits[2:0] = 010 bits[2:0] = 011 bits[2:0] = 100 bits[2:0] = 101 bits[2:0] = 110 bits[2:0] = 111 Reset Default 0 1
4
ATM_SIZE_Tx[A--D]
0
3
TRAFFIC_TYPE_Tx [A--D]
0
2--0
UTOPIA_MODE_Tx [A--D][2:0]
000
U3 configuration also requires appropriate setting of register 0x0225 (PA response) to be set for a two-cycle response.
160
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
UT Registers (continued)
UT Provisioning Registers (R/W) (continued) Table 63. Registers 0x0211, 0x0215, 0x0219, 0x021D: Channel [A--D] Ingress Provisioning Register (R/W) Reset default of registers = 0x361F. Address (Hex) Bit # Name Function Reset Default 00 110110
0211, 0215, 15--14 -- 0219, 021D 13--8 INGRESS_WATERMARK _HIGH_[A--D][6:0]
7--6 5--0
Reserved. These bits must be written to their reset default value (00). Ingress Watermark High for Channel [A--D]. Defines threshold before which overflow is detected causing a head of FIFO discard; data in the receive FIFO will be discarded down to the next start of packet/cell. -- Reserved. These bits must be written to their reset default value (00). INGRESS_WATERMARK Ingress Watermark Low for Channel [A--D]. Defines how many words must be stored in the _LOW_[A--D][6:0] ingress FIFO before transmission out of the UTOPIA port, if an end of packet is not received.
00 011111
Table 64. Registers 0x0212, 0x0216, 0x021A, 0x021E: Channel [A--D] Egress Provisioning Register (R/W) Reset default of registers = 0x361F. Address (Hex) Bit # Name Function Reset Default 00 110110
0212, 0216, 15--14 -- 021A, 021E 13--8 EGRESS_WATERMARK_ HIGH_[A--D][6:0]
7--6 5--0
Reserved. These bits must be written to their reset default value (00). Egress Watermark High for Channel [A--D]. Defines how many words can be stored into the egress FIFO before backpressure is applied to the UTOPIA PHY Tx port to stop acceptance of more traffic. Default value is set for packet transfer. For ATM transfer, the value should be configured as 0x29. For packet mode, this value depends upon the specific user-interface characteristics. The default value (110110) will work for packet mode. -- Reserved. These bits must be written to their reset default value (00). EGRESS_WATERMARK_ Egress Watermark Low for Channel [A--D]. LOW_[A--D][6:0] Defines how many words must be stored in the egress FIFO before transmission to the data engine, if an end of packet is not received.
00 011111
Agere Systems Inc.
161
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
UT Registers (continued)
Reset Register (R/W) Table 65. Register 0x021F: Reset Register (R/W) Reset default of register = 0x00FF. Address (Hex) 021F Bit # -- Name UT_ARST Function UTOPIA Asynchronous Reset. Active-high signal. This must be the last signal written to the UTOPIA interface during configuration and must be written to the value 0x00 to enable the particular channels. Reserved. These bits must be written to their reset default value (0x00). Transmit ARST for Transmit Channel D. Transmit ARST for Transmit Channel C. Transmit ARST for Transmit Channel B. Transmit ARST for Transmit Channel A. Receive ARST for Receive Channel D. Receive ARST for Receive Channel C. Receive ARST for Receive Channel B. Receive ARST for Receive Channel A. Reset Default 0x00FF
15--8 7 6 5 4 3 2 1 0
-- UT_TxARST_D UT_TxARST_C UT_TxARST_B UT_TxARST_A UT_RxARST_D UT_RxARST_C UT_RxARST_B UT_RxARST_A
0x00 1 1 1 1 1 1 1 1
Error Count Registers (RO) Table 66. Register 0x0220: Channel [A--D] Error Count (RO) Reset default of register = 0x0000. Address (Hex) Bit # Name PECTx[A--D] Function Parity Error Count Transmit Channel [A--D]. Counts the instantaneous (real-time) number of parity errors that occur for Tx channel [A--D]. Reset Default 0x0000
0220--0223 15--0
Scratch Register (R/W) Table 67. Register 0x0224: UT_Scratch Register (R/W) Reset default of register = 0x0000. Address (Hex) 0224 Bit # 15--0 Name UT_SCRATCH Function UT Scratch Register. Read/write register with no other internal UT connections. Reset Default 0x0000
162
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
UT Registers (continued)
PA Response Register (R/W) Table 68. Register 0x0225: PA Response Register (R/W) Reset default of register = 0x0000. Address (Hex) 0225 Bit # -- Name PA/DATA Function Packet Available (PA). In MPHY mode, when this bit is 0, the PA response follows placement of a valid address on the address bus by the ATM master device by one UTOPIA interface clock period. The RxDATA response follows the RxENB assertion. Reset Default 0x0000
If this bit is 1, then the PA response and RxDATA response follow the address by two clock periods. Two-cycle response is provided for U3-compatible operation. 15--8 -- Reserved. These bits must be written to their reset default value (0x00). 7 TxPAD TxPA Response for Transmit Channel D. 6 TxPAC TxPA Response for Transmit Channel C. 5 TxPAB TxPA Response for Transmit Channel B. 4 TxPAA TxPA Response for Transmit Channel A. 3 RxPAD/RxDATAD/RxSOP/ RxPA Response for Receive Channel D. CD 2 RxPAC/RxDATAC/RxSOP/ RxPA Response for Receive Channel C. CC 1 RxPAB/RxDATAB/RxSOP/ RxPA Response for Receive Channel B. CB 0 RxPAA/RxDATAA/RxSOP/ RxPA Response for Receive Channel A. CA
0x00 0 0 0 0 0 0 0 0
Agere Systems Inc.
163
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
UT Registers (continued)
Size Mode Register (R/W) Table 69. Register 0x0226: Size Mode Register (R/W) Reset default of register = 0x0000. Address (Hex) 0226 Bit # -- Name -- Function Size Mode. Size mode for each channel. These bits define the size mode for the TxSZ[D--A] and RxSZ[D--A] pins (see Table 5, page 32 and page 38). If this mode bit = 0 (default mode): I TxSIZE_[D--A] (or RxSIZE_[D--A]) set to 0 means the most significant byte is the last byte of the current packet, and
I
Reset Default 0x0000
TxSIZE_[D--A] (or RxSIZE_[D--A]) set to 1 means the least significant byte is the last byte.
I
If this mode bit = 1: TxSIZE_[D--A] (or RxSIZE_[D--A]) set to 1 means the most significant byte is the last byte of the current packet, and TxSIZE_[D--A] (or RxSIZE_[D--A]) set to 0 means the least significant byte is the last byte. Reserved. These bits must be written to their reset default value (0x00). TxSIZE_MODE for Transmit Channel D. TxSIZE_MODE for Transmit Channel C. TxSIZE_MODE for Transmit Channel B. TxSIZE_MODE for Transmit Channel A. RxSIZE_MODE for Receive Channel D. RxSIZE_MODE for Receive Channel C. RxSIZE_MODE for Receive Channel B. RxSIZE_MODE for Receive Channel A.
I
15--8 7 6 5 4 3 2 1 0
-- TxSIZE_D TxSIZE_C TxSIZE_B TxSIZE_A RxSIZE_D RxSIZE_C RxSIZE_B RxSIZE_A
0x00 0 0 0 0 0 0 0 0
164
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers
This section gives a brief description of each register bit and its functionality. All algorithms are described in the main text of the document. The abbreviations after each register indicate if the register is read only (RO), read/ write (R/W), write only (WO), or clear-on-read or clear-on-write (COR/W). 0x indicates a hexadecimal value in the Reset Default column. Otherwise, the entry is binary. This is true for every register table in the document. Table 70. Register 0x0400: OHP Macrocell Version Number (RO) Reset default of register = 0x0000. Address (Hex) 0400 Bit # 15--0 Name OHP_VERSION[15:0] Function OHP Macrocell Version Number. The version of the macrocell will increment each time a change occurs to the macrocell functionality. Reset Default 0x0000
Table 71. Register 0x0401: OHP Interrupt (RO) Reset default of register = 0x0000. Address (Hex) 0401 Bit # 15--4 3 2 1 0 Name -- OHP_INT[D] OHP_INT[C] OHP_INT[B] OHP_INT[A] Function Reserved. These bits must be written to their reset default value (0x000). OHP Interrupt. Active-high interrupt bits for channels D to A. Each bit is the ORing of all event and delta bits of that channel. In STS-48/ STM-16 mode, INT[A] is valid. Reset Default 0x000 0x0 0x0 0x0 0x0
Table 72. Registers 0x0402--0x0409: Delta/Event (COR/W) Reset default of registers = 0x0000. Address (Hex) 0402, 0404, 0406, 0408 Bit # 15 Name LRDIMOND[A--D] Function Line/Multiplex RDI Delta. Delta bits indicate a change of state for the line/multiplex RDI state bits (LRDIMON[A--D]). Their mask bits are LRDIMONM[A--D]. Only LRDIMOND[A] is valid for STS-48/STM-16. Line/Multiplex AIS Delta. Delta bits indicate a change of state for the line/multiplex AIS state bits (LAISMON[A--D]). Their mask bits are LAISMONM[A--D]. Only LAISMOND[A] is valid for STS-48/STM-16. APS Babble Event. Each bit is active-high to indicate the inconsistence in K1 byte of that channel. Their mask bits are RAPSBABLEM[A--D]. Only RAPSBABLEE[A] is valid for STS-48/STM-16. Reset Default 0
14
LAISMOND[A--D]
0
13
RAPSBABLEE[A--D]
0
Agere Systems Inc.
165
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 72. Registers 0x0402--0x0409: Delta/Event (COR/W) (continued) Reset default of registers = 0x0000. Address (Hex) 0402, 0404, 0406, 0408 Bit # 12 Name S1DMON4D[A--D] Function Delta Register for S1DMON[3:0] When S1MON8or4CTL = 1. Each delta bit indicates a change of state for S1DMON[3:0] in its channel. Their mask bits are S1DMON4M[A--D]. In STS-48/STM-16 mode, S1DMON4D[A] is valid. Delta Register for S1DMON[7:4] When S1MON8or4CTL = 1 or S1DMON[7:0] When S1MON8or4CTL = 0. Each delta bit indicates a change of state for S1DMON[7:4]/ S1DMON[7:0] in its channel. Their mask bits are S1DMON8M[A--D]. In STS-48/STM-16 mode, S1DMON8D[A] is valid. K2[2:0] Data Monitor Delta. Each bit is activehigh to indicate a change in K2DMON[A--D] for that channel. Their mask bits are K2DMONM[A--D]. Only K2DMOND[A] is valid for STS-48/STM-16. K1K2 Data Monitor Delta. Each bit is activehigh to indicate a change in (K1[7:0] and K2[7:3]) or (K1[7:0] and K2[7:0]) for that channel depending on K1K2_2_OR_1. Their mask bits are K1K2DMONM[A--D]. Only K1K2DMOND[A] is valid for STS-48/STM-16. F1 Data Monitor Delta. Their mask bits are F1DMONM[A--D]. Only F1DMOND[A] is valid for STS-48/STM-16. Transmit TOAC Parity Error Event. Event bit indicates a parity error was detected on the incoming TOAC. Receive S1 Byte Babbling Event. Event bit will be set if CNTDS1FRAME[A--D][3:0] consecutive frames pass without a validated S1 byte. Signal Fail BER Algorithm Delta. Delta bits indicate a change of state for the signal fail BER algorithm state bits (SF[A--D]). Their mask bits are SFM[A--D]. Only SFD[A] is valid for STS48/STM-16. Reset Default 0
11
S1DMON8D[A--D]
0
10
K2DMOND[A--D]
0
9
K1K2DMOND[A--D]
0
8
F1DMOND[A--D]
0
7
TTOAC_PERRE[A--D]
0
6
S1BABBLEE[A--D]
0
5
SFD[A--D]
0
166
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 72. Registers 0x0402--0x0409: Delta/Event (COR/W) (continued) Reset default of registers = 0x0000. Address (Hex) 0402, 0404, 0406, 0408 Bit # 4 Name SDD[A--D] Function Signal Degrade BER Algorithm Delta. Delta bit indicates a change of state for the signal degrade BER algorithm state bits (SD[A--D]). Their mask bits are SDM[A--D]. Only SDD[A] is valid for STS-48/STM-16. Receive Out-of-Frame Delta. Delta bit indicates a change of state for the out-of-frame (OOF[A--D]). Their mask bits are OOFM[A--D]. In STS-48/STM-16 mode, only OOFD[A] is valid. Receive Loss-of-Frame Delta. Delta bit indicates a change of state for the loss-of-frame (LOF[A--D]) . Their mask bits are LOFM[A--D]. In STS-48/STM-16 mode, only LOFD[A] is valid. Receive Loss-of-Signal Delta. Delta bit indicates a change of state for the loss-of-signal (LOS[A--D]). Their mask bits are LOSM[A--D]. In STS-48/STM-16 mode, only LOSD[A] is valid. Receive Loss-of-Clock Delta. Delta bit indicates a change of state for the loss-of-clock (LOC[A--D]). Their mask bits are LOCM[A--D]. In STS-48/STM-16 mode, only LOCD[A] is valid. Reserved. These bits must be written to their reset default value (000000000000000). Reset Default 0
3
OOFD[A--D]
0
2
LOFD[A--D]
0
1
LOSD[A--D]
0
0
LOCD[A--D]
0
0403, 0405, 0407, 0409
15--1
--
0
J0MISE[A--D]
J0 Mismatch Event. Their mask bits are J0MISM[A--D]. In STS-48/STM-16 mode, only J0MISE[A] is valid for J0 byte while J0MISE[B-- D] are used for Z0 bytes.
000 0000 0000 0000 0
Agere Systems Inc.
167
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 73. Registers 0x040A--0x040D: Receive/Transmit State (RO) Reset default of registers = 0x000C. Address (Hex) 040A--040D Bit # 15 14 13--7 6 Name LRDIMON[A--D] LAISMON[A--D] -- TLRDIINT[A--D] Function Line/Multiplex RDI State. In STS-48/ STM-16 mode, only LRDIMON[A] is valid. Line/Multiplex AIS State. In STS-48/ STM-16 mode, only LAISMON[A] is valid. Reserved. These bits must be written to their reset default value (0000000). Transmit Line RDI Insert State. State bits for inserting line RDI value into the K2[2:0] bits. In STS-48/STM-16 mode, only TLRDIINT[A] is valid. Signal Fail State. In STS-48/STM-16 mode, only SF[A] is valid. Signal Degrade State. In STS-48/STM-16 mode, only SD[A] is valid. Out-of-Frame. Active-high out-of-frame state bits. In STS-48/STM-16 mode, only OOF[A] is valid. Loss-of-Frame. Active-high loss-of-frame state bits. In STS-48/STM-16 mode, only LOF[A] is valid. Loss-of-Signal. Active-high loss-of-signal state bits. In STS-48/STM-16 mode, only LOS[A] is valid. Loss-of-Clock. Active-high loss-of-clock state bits. In STS-48/STM-16 mode, only LOC[A] is valid. Reset Default 0 0 000 0000 0
5 4 3
SF[A--D] SD[A--D] OOF[A--D]
0 0 1
2
LOF[A--D]
1
1
LOS[A--D]
0
0
LOC[A--D]
0
168
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 74. Registers 0x040E, 0x0410, 0x0412, 0x0414: Mask Bits (R/W) Reset default of registers = 0xFFFF. Address (Hex) 040E, 0410, 0412, 0414 Bit # 15 Name LRDIMONM[A--D] Function Line/Multiplex RDI Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only LRDIMONM[A] is valid. Line/Multiplex AIS Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only LAISMONM[A] is valid. APS Babble Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only RAPSBABLEM[A] is valid. Mask Bits for S1DMON4D When S1MON8 or 4CTL = 1. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only S1DMON4LSNM[A] is valid. Mask Bits for S1DMON8D. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only S1DMON8M[A] is valid. K2[2:0] Data Monitor Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only K2DMONM[A] is valid. K1K2 Data Monitor Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only K1K2DMONM[A] is valid. F1 Data Monitor Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only F1DMONM[A] is valid. Transmit TOAC Parity Error Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. All 4 bits are valid in every mode. Reset Default 1
14
LAISMONM[A--D]
1
13
RAPSBABLEM[A--D]
1
12
S1DMON4M[A--D]
1
11
S1DMON8M[A--D]
1
10
K2DMONM[A--D]
1
9
K1K2DMONM[A--D]
1
8
F1DMONM[A--D]
1
7
TTOAC_PERRM[A--D]
1
Agere Systems Inc.
169
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 74. Registers 0x040E, 0x0410, 0x0412, 0x0414: Mask Bits (R/W) (continued) Reset default of registers = 0xFFFF. Address (Hex) 040E, 0410, 0412, 0414 Bit # 6 Name S1BABBLEM[A--D] Function S1 Babbling Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only S1BABBLEM[A] is valid. Signal Fail Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only SFM[A] is valid. Signal Degrade Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only SDM[A] is valid. Out-of-Frame Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only OOFM[A] is valid. Loss-of-Frame Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only LOFM[A] is valid. Loss-of-Signal Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only LOSM[A] is valid. Loss-of-Clock Mask. A 1 masks the corresponding occurrence of the alarm to the interrupt. In STS-48/STM-16 mode, only LOCM[A] is valid. Reset Default 1
5
SFM[A--D]
1
4
SDM[A--D]
1
3
OOFM[A--D]
1
2
LOFM[A--D]
1
1
LOSM[A--D]
1
0
LOCM[A--D]
1
Table 75. Registers 0x040F, 0x0411, 0x0413, 0x0415: Mask Bits (R/W) Reset default of registers = 0x8001. Address (Hex) 040F, 0411, 0413, 0415 Bit # 15 14--1 Name INTM[A--D] -- Function Interrupt Mask. The corresponding occurrence of a 1 masks the alarm to the interrupt. Reserved. These bits must be written to their reset default value (00000000000000). Reset Default 1 00 0000 0000 0000 1
0
J0MISM[A--D]
J0 Mismatch Mask. The corresponding occurrence of a 1 masks the alarm to the interrupt.
170
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 76. Registers 0x0416--0x0419: Toggles (R/W) Reset default of registers = 0x0000. Note: These registers are one-shot type registers. They are enabled by writing a 0-to-1 transition to a bit. After being enabled, the registers must be cleared by writing all bits to 0 following access. Address (Hex) Bit # Name -- Function Reserved. These bits must be written to their reset default value (00000000000). Transmit A1/A2 Error Enable. Enable signal to start the insertion of A2 errors in the outgoing frame. The number of consecutive errors is controlled by TA1A2ERRINS[4:0]. TA1A2ERREN[A] is valid in STS-48/STM-16 mode. Signal Fail Clear. Allows the signal fail algorithm to be forced into the normal state. Signal Fail Set. Allows the signal fail algorithm to be forced into the failed state. Signal Degrade Clear. Allows the signal degrade algorithm to be forced into the normal state. Signal Degrade Set. Allows the signal degrade algorithm to be forced into the degraded state. Reset Default 000 0000 0000 0
0416--0419 15--5
4
TA1A2ERREN[A--D]
3 2 1
SFCLEAR[A--D] SFSET[A--D] SDCLEAR[A--D]
0 0 0
0
SDSET[A--D]
0
Table 77. Registers 0x041A, 0x041C, 0x041E, 0x0420: Continuous N Times Detect (CNTD) Values (R/W) Reset default of registers = 0x3333. Address (Hex) Bit # Name CNTDK2[A--D][3:0] Function Continuous N Times Detect for K2[2:0] Byte. The valid range for these bits is 0x2--0xF. Invalid values will be mapped to a value of 0x1. In STS-48/STM-16 mode, CNTDK2[A] is valid. Continuous N Times Detect for APS (K1, K2[7:3]) Byte. The valid range for these bits is 0x2--0xF. Invalid values will be mapped to a value of 0x1. In STS-48/STM-16 mode, CNTDK1K2[A] is valid. Continuous N Times Detect for F1 Byte. The valid range for these bits is 0x2--0xF. Invalid values will be mapped to a value of 0x1. In STS-48/STM-16 mode, CNTDF1[A] is valid. Continuous N Times Detect for J0Z0 Bytes. The valid range for these bits is 0x2--0xF. Invalid values will be mapped to a value of 0x1. In STS-48/STM-16 mode, CNTDJ0Z0[A] is valid. Reset Default 0x3
041A, 041C, 15--12 041E, 0420
11--8
CNTDK1K2[A--D][3:0]
0x3
7--4
CNTDF1[A--D][3:0]
0x3
3--0
CNTDJ0Z0[A--D][3:0]
0x3
Agere Systems Inc.
171
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 78. Registers 0x041B, 0x041D, 0x041F, 0x0421: Continuous N Times Detect (CNTD) Values (R/W) Reset default of registers = 0x053C. Address (Hex) 041B, 041D, 041F, 0421 Bit # 15--12 11--8 Name -- CNTDS1FRAME [A--D][3:0] Function Reserved. These bits must be written to their reset default value (0x0). Continuous N Times Detect for S1 Byte Babbling. The valid range for these bits is 0x2--0xF. Invalid values will be mapped to a value of 0x1. In STS-48/STM-16 mode, CNTDS1FRAME[A] is valid. Continuous N Times Detect for S1 Byte. The valid range for these bits is 0x2--0xF. Invalid values will be mapped to a value of 0x1. In STS-48/STM-16 mode, CNTDS1[A] is valid. Continuous N Times Detect for APS Frame. The valid range for these bits is 0x2--0xF. Invalid values will be mapped to a value of 0x1. In STS-48/ STM-16 mode, CNTDK1K2FRAME[A] is valid. Reset Default 0x0 0x5
7--4
CNTDS1[A--D][3:0]
0x3
3--0
CNTDK1K2FRAME [A--D][3:0]
0xC
172
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 79. Registers 0x0422--0x042D: Receive Control (R/W) Reset default of registers = 0x0000. Address (Hex) Bit # Name J0MONMODE[A--D][1:0] Function J0 Monitoring Mode. The four modes are, 00 = The OHP will latch the value of the J0 byte every frame for a total of 16 bytes. The OHP will compare the incoming J0 byte with the next expected value (the expected value is obtained by cycling through the previously stored 16 received bytes in round-robin fashion) and set the event bit if different. 01 = This is the SONET framing mode. The hardware looks for 0x0D followed by 0x0A to indicate that the next byte is the first byte of the path trace message. The J0 byte is continuously written into J0DMON with the first byte residing at the first address. If any received byte does not match the previously received byte for its location, then the event bit is set. 10 = This is the SDH framing mode. The hardware looks for the byte with the MSB set to 1, which indicates that the next byte is the second byte of the message. The rest of the operation is the same as the SONET framing mode. 11 = A new J0 byte J0DMON[0][7:0] will be detected after CNTDJ0Z0[3:0] consecutive consistent occurrences of a new pattern in the J0 overhead byte. Any changes to this byte are reported to J0MISE and J0MISM. These event bits will act as delta bits indicating a change of state for the J0DMON[0][7:0]. Bit 7 of M1 Byte Ignore. Bit 7 of M1 byte will be ignored if M1B7IGNORE is set to 1 for that channel. Only M1B7IGNORE[A] is valid for STS-48/STM-16. AIS Software Insertion. Active-high for AIS insertion. In STS-48/STM-16 mode, only LAISINS[A] is valid. Loss-of-Frame AIS Inhibit. When set to logic 1, the AIS insertion will be inhibited in case of loss-of-frame. Out-of-Frame AIS Inhibit. When set to logic 1, the AIS insertion will be inhibited in case of outof-frame. Reset Default 00
0422, 0424, 15--14 0426, 0428
13
M1B7IGNORE[A--D]
0
12
LAISINS[A--D]
0
11
LOF_AISINH[A--D]
0
10
OOF_AISINH[A--D]
0
Agere Systems Inc.
173
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 79. Registers 0x0422--0x042D: Receive Control (R/W) (continued) Reset default of registers = 0x0000. Address (Hex) 0422, 0424, 0426, 0428 Bit # 9 Name LOS_AISINH[A--D] Function Reset Default 0
8
7
6
5
4
3
2
1
0
Loss-of-Signal AIS Inhibit. When set to logic 1, the line AIS insertion will be inhibited in case of loss-of-signal. SFB1B2SEL[A--D] Signal Fail B1/B2 Error Count Select. When set to logic 0, the B1 errors will be used by the signal fail error rate algorithm; otherwise, B2 errors are used. SDB1B2SEL[A--D] Signal Degrade B1/B2 Error Count Select. When set to logic 0, the B1 errors will be used by the signal degrade error rate algorithm; otherwise, B2 errors are used. CNTDB1SEL[A--D] Reset CNTD Counters on B1 Error. Activehigh control bits to reset continuous N time detect counters upon received B1 errors. Only CNTDB1SEL[0] is valid for STS-48/STM-16. S1MON8_OR_4CTL[A--D] S1 Byte or Nibble. When set to logic 1, the S1 byte will be monitored as two nibbles. Otherwise, it is treated as a byte. Only S1MON8or4CTL[A] is valid for STS-48/STM16. K1K2_2_OR_1[A--D] K1 and K2 Treated as 2 Registers or 1. When a bit is set to 1, the K1 and K2 bytes will be treated as one 16-bit register. Otherwise, they will be treated as two registers of size 13 (K1[7:0] and K2[7:3]) and 3 (K2[2:0]). K1K2_2_OR_1[A] is valid for STS-48/STM-16. B2BITBLKCNT[A--D] B2 Error Count in Bit or Block. When set to 0, B2 check logic will count bit errors; otherwise, it counts block errors. Only B2BITBLKCNT[A] is valid for STS-48/STM-16. DSCRINH[A--D] Descramble Inhibit Control. When a bit is set to 1, the descrambler for that is disabled. In STS-48/STM-16 mode, all 4 bits need to be set to same value. B1BITBLKCNT[A--D] B1 Error Count in Bit or Block. When set to 0, B1 check logic will count bit errors; otherwise, it counts block errors. Only B1BITBLKCNT[A] is valid for STS-48/STM-16. ROH_BYPASS[A--D] Receive Overhead Bypass. Control bit, when set to 1, causes the received data to pass through the block retimed. In STS-48/STM-16 mode, all 4 bits need to be set to same value.
0
0
0
0
0
0
0
0
0
174
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 79. Registers 0x0422--0x042D: Receive Control (R/W) (continued) Reset default of registers = 0x0000. Address (Hex) 0423, 0425, 0427, 0429 Bit # 15 Name M1BITBLKCNT[A--D] Function M1 Error Count in Bit or Block. When set to 0, M1 check logic will count bit errors. When set to 1, block errors are counted. Only M1BITBLKCNT[C] is valid for STS-48/STM-16. Reserved. These bits must be written to their reset default value (00). Loss-of-Signal Detection Count. Set the number of consecutive all-zeros/-ones pattern detected to declare receive LOS state for each channel. The time scale is in steps of 8 (for STS-3/STM-1 and STS-12/STM-4) or 32 (STS-48/STM-16) bits at a time. Only LOSDETCNT[A][12:0] is valid for STS-48/ STM-16. Receive Reference Sync Select. Select reference output from channel A (00), B (01), C (10), and D (11). Receive Reference Sync Enable. When set to 0, the receive 8 kHz (50% duty cycle) sync output, RxREF (pin AK3), is placed in the highimpedance state. Reserved. These bits must be written to their reset default value (000000000). Receive TOAC Frame (Sync) Inhibit Channel A. When set to 1, the TOAC sync output, RxTOHF (pin AK4), is placed in the high-impedance state. Receive TOAC Clock Inhibit Channel A. When set to 1, the TOAC clock output, RxTOHCK (pin AK5), is placed in the highimpedance state. Receive TOAC Data Inhibit Channel A. When set to 1, the TOAC data output, RxTOHD (pin AL2), is placed in the high-impedance state. Receive TOAC Odd or Even Parity Insert Channel A. When set to 1, the output TOAC parity bit is even. When set to 0, the parity is odd. Reset Default 0
14--13 12--0
-- LOSDETCNT[A--D][12:0]
00 0 0000 0000 0000
042A
15--14
RREFSEL[1:0]
00
13
RREF_EN
0
12--4 3
-- RTOACSINH[A]
0000 00000 0
2
RTOACCINH[A]
0
1
RTOACDINH[A]
0
0
RTOAC_OEPINS[A]
0
Agere Systems Inc.
175
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 79. Registers 0x0422--0x042D: Receive Control (R/W) (continued) Reset default of registers = 0x0000. Address (Hex) 042B--042D Bit # 15--4 3 Name -- RTOACSINH[B--D] Function Reserved. These bits must be written to their reset default value (0x000). Receive TOAC Frame (Sync) Inhibit Channel [B--D]. When set to 1, the TOAC sync output, RxTOHF (pins AL3, AN5, AP6), is placed in the high-impedance state. Receive TOAC Clock Inhibit Channel [B--D]. When set to 1, the TOAC clock output, RxTOHCK (pins AL4, AL6, AL7), is placed in the high-impedance state. Receive TOAC Data Inhibit Channel [B--D]. When set to 1, the TOAC data output, RxTOHD (pins AM5, AM6, AN7), is placed in the highimpedance state. Receive TOAC Odd or Even Parity Insert Channel [B--D]. When set to 1, the output TOAC parity bit is even. When set to 0, the parity is odd. Reset Default 0x000 0
2
RTOACCINH[B--D]
0
1
RTOACDINH[B--D]
0
0
RTOAC_OEPINS[B--D]
0
176
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 80. Registers 0x042E: Transmit Control Port A (R/W) Reset default of registers = 0x0003. Address (Hex) 042E Bit # 15 Name TTOACINH Function Transmit TOAC Clock and Sync Inhibit Channel A. When set to 1, the transmit TOAC clock and sync are placed in the high-impedance state. Transmit J0 Insert Control Channel A. Control bit, when set to a logic 1, inserts the value in TJ0DINS[A--D][16:1][7:0] into the outgoing J0 bytes; otherwise, the insert value depends on TTOAC_J0[A--D] registers. TJ0INS[A] is valid in STS-48/STM-16 mode.* Transmit TOAC J0 Byte Control Channel A. Control bit, when set to logic 0, causes the default value 00000000 for SONET or 11111111 for SDH to be inserted into the J0 byte in the transmit frame. Setting this bit to logic 1 causes the TTOAC value to be inserted into the J0 byte. TTOAC_J0[A] is valid for STS48/STM-16 mode.* Transmit TOAC Odd or Even Parity Monitor Channel A. When set to 1, even parity is checked for transmit TOAC channels; otherwise, odd parity is checked. Transmit TOAC Byte Control Channel A. Control bit, when set to logic 0, causes the default value 00000000 for SONET or 11111111 for SDH to be inserted into those overhead bytes within the transmit frame that do not have all specific insert control bits. Setting these bits to logic 1 causes the TTOAC value to be inserted into those overhead bytes not having specific insert control bits. TTOAC_INS[A] is valid for STS-48/STM-16 mode. Transmit TOAC E2 Byte Control Channel A. Control bit, when set to logic 0, causes the default value to be inserted into the E2 byte in the transmit frame. Setting these bits to logic 1 causes the TTOAC value to be inserted into the E2 byte. TTOAC_E2[A] is valid for STS-48/ STM-16 mode. Reset Default 0
14
TJ0INS[A]
0
13
TTOAC_J0[A]
0
12
TTOAC_OEPMON[A]
0
11
TTOAC_INS[A]
0
10
TTOAC_E2[A]
0
* TJ0INS = 1 always sets J0 to the TJ0DINS values regardless of the value of TTOAC_J0.
Agere Systems Inc.
177
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 80. Registers 0x042E: Transmit Control Port A (R/W) (continued) Reset default of registers = 0x0003. Address (Hex) 042E Bit # 9 Name TTOAC_S1[A] Function Transmit TOAC S1 Byte Control Channel A. Control bit, when set to logic 0, causes the default value to be inserted into the S1 byte in the transmit frame. Setting these bits to logic 1 causes the TTOAC value to be inserted into the S1 byte. TTOAC_S1[A] is valid for STS-48/ STM-16 mode. Transmit TOAC D4 to D12 Byte Control Channel A. Control bit, when set to logic 0, causes the default value to be inserted into the D4 to D12 bytes in the transmit frame. Setting these bits to logic 1 causes the TTOAC value to be inserted into the D4 to D12 bytes. TTOAC_D4TO12[A] is valid for STS-48/ STM-16 mode. Transmit TOAC D1 to D3 Byte Control Channel A. Control bit, when set to logic 0, causes the default value to be inserted into the D1 to D3 bytes in the transmit frame. Setting these bits to logic 1 causes the TTOAC value to be inserted into the D1 to D3 bytes. TTOAC_D1TO3[A] is valid for STS-48/STM-16 mode. Transmit TOAC F1 Byte Control Channel A. Control bit, when set to logic 0, causes the default value to be inserted into the F1 byte in the transmit frame. Setting these bits to logic 1 causes the TTOAC value to be inserted into the F1 byte. TTOAC_F1[A] is valid for STS-48/ STM-16 mode. Transmit TOAC E1 Byte Control Channel A. Control bit, when set to logic 0, causes the default value to be inserted into the E1 byte in the transmit frame. Setting this bit to logic 1 causes the TTOAC value to be inserted into the E1 byte. TTOAC_E1[A] is valid for STS-48/ STM-16 mode. Transmit APS Babble Insert Channel A. Control bit, when set to 1, causes an inconsistent APS byte (K1[7:0], K2[7:3]) to be inserted into the outgoing STS-M frame until this register is reset to 0. Reset Default 0
8
TTOAC_D4TO12[A]
0
7
TTOAC_D1TO3[A]
0
6
TTOAC_F1[A]
0
5
TTOAC_E1[A]
0
4
TAPSBABBLEINS[A]
0
178
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 80. Registers 0x042E: Transmit Control Port A (R/W) (continued) Reset default of registers = 0x0003. Address (Hex) 042E Bit # 3 Name TM1_ERR_INS[A] Function Transmit M1 Error Insert Channel A. Once this register is set to 1, an error will be inserted continuously into the outgoing M1 byte until this register is reset to 0. In STS-48/STM-16 mode, only TM1_ERR_INS is valid. Transmit M1 REI-L Inhibit Channel A. Activehigh to inhibit automatic insertion of REI-L (MS-REI). In STS-48/STM-16 mode, only TM1_REIL_INH is valid. Transmit F1 Insert Control Channel A. Control bit, when set to a logic 1, inserts the value in TF1DINS[7:0] into the outgoing F1 byte in the STS-M frame; otherwise, the insert value depends on TTOAC_F1 register. TF1INS[A] is valid in STS-48/STM-16 mode. Transmit S1 Insert Control Channel A. Control bit, when set to a logic 1, inserts the value in TS1DINS[7:0] into the outgoing S1 byte in the STS-M frame; otherwise, the insert value depends on TTOAC_S1 register. TS1INS[A] is valid in STS-48/STM-16 mode. Reset Default 0
2
TM1_REIL_INH[A]
0
1
TF1INS[A]
1
0
TS1INS[A]
1
Agere Systems Inc.
179
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 81. Registers 0x042F, 0x0431, 0x0433, 0x0435: Transmit Control (R/W) Reset default of registers = 0x0000. Address (Hex) 042F, 0431, 0433, 0435 Bit # 15--11 Name Function Reset Default 0x00
10
9
8
7
6
5 4 3 2 1 0
TA1A2ERRINS[A--D][4:0] Number of Consecutive Frames with A2 Error Insertion. These bits specify the number of consecutive frames to be inserted with a frame error of the first A2 byte. TOH_BYPASS[A--D] Transmit Overhead Bypass. Control bit, when set to 1, causes the frame from PT pass through untouched. In STS-48/STM-16 mode, all 4 bits need to be set to same value. SCRINH[A--D] Scramble Inhibit. When set to high, the scrambling is inhibited. In STS-48/STM-16 mode, all 4 bits need to be set to same value. TB1ERRINS[A--D] Transmit B1 Error Insertion. When set to high, the B1 output will be inverted. For STS-48/STM-16, only TB1ERRINS[A] is valid. TB2ERRINS[A--D] Transmit B2 Error Insertion. When set to high, all B2 bytes in that channel will be inverted. All 4 bits are valid in STS-48/STM-16 mode. TIMER_LRDIINH[A--D] Transmit 20-Frame Line RDI Inhibit. Control bit, when set to logic high, inhibits the requirement of minimum 20 frame RDI insertion. TSF_LRDIINH[A--D] Transmit Signal Fail Line RDI Inhibit. Activehigh. Transmit Line-AIS-Monitored Line RDI TLAISMON_LRDIINH Inhibit. Active-high. [A--D] TLOF_LRDIINH[A--D] Transmit Loss-of-Frame Line RDI Inhibit. Active-high. TOOF_LRDIINH[A--D] Transmit Out-of-Frame Line RDI Inhibit. Active-high. TLOS_LRDIINH[A--D] Transmit Loss-of-Signal Line RDI Inhibit. Active-high. TLOC_LRDIINH[A--D] Transmit Loss-of-Clock Line RDI Inhibit. Control bit, when set to a logic 1, causes the associated failure not to contribute to the automatic insertion of RDI-L; otherwise, the associated alarm contributes to the generation of RDI-L.
0
0
0
0
0
0 0 0 0 0 0
180
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 82. Registers 0x0430, 0x0432, 0x0434: Transmit Control Port [B--D] (R/W) Reset default of registers = 0x0003. Address (Hex) 0430, 0432, 0434 Bit # 15 14 Name -- TJ0INS[B--D] Function Reserved. This bit must be written to its reset default value (0). Transmit J0 Insert Control Channel [B--D]. Control bit, when set to a logic 1, insert the value in TJ0DINS[A--D][16:1][7:0] into the outgoing J0 bytes; otherwise, the insert value depends on TTOAC_J0[A--D] registers. TJ0INS[A] is valid in STS-48/STM-16 mode.* Transmit TOAC J0 Byte Control Channel [B--D]. Control bit, when set to logic 0, causes the default value 00000000 for SONET or 11111111 for SDH to be inserted into the J0 byte in the transmit frame. Setting this bit to logic 1 causes the TTOAC value to be inserted into the J0 byte. TTOAC_J0[A] is valid for STS48/ STM-16 mode.* Transmit TOAC Odd or Even Parity Monitor Channel [B--D]. When set to 1, even parity is checked for transmit TOAC channels; otherwise, odd parity is checked. Transmit TOAC Byte Control Channel [B--D]. Control bit, when set to logic 0, causes the default value 00000000 for SONET or 11111111 for SDH to be inserted into those overhead bytes within the transmit frame that do not have all specific insert control bits. Setting this bit to logic 1 causes the TTOAC value to be inserted into those overhead bytes not having specific insert control bits. TTOAC_INS[A] is valid for STS-48/STM-16 mode. Transmit TOAC E2 Byte Control Channel [B--D]. Control bit, when set to logic 0, causes the default value to be inserted into the E2 byte in the transmit frame. Setting this bit to logic 1 causes the TTOAC value to be inserted into the E2 byte. TTOAC_E2[A] is valid for STS-48/ STM-16 mode. Reset Default 0 0
13
TTOAC_J0[B--D]
0
12
TTOAC_OEPMON[B--D]
0
11
TTOAC_INS[B--D]
0
10
TTOAC_E2[B--D]
0
* TJ0INS = 1 always sets J0 to the TJ0DINS values regardless of the value of TTOAC_J0.
Agere Systems Inc.
181
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 82. Registers 0x0430, 0x0432, 0x0434: Transmit Control Port [B--D] (R/W) (continued) Reset default of registers = 0x0003. Address (Hex) 0430, 0432, 0434 Bit # 9 Name TTOAC_S1[B--D] Function Transmit TOAC S1 Byte Control Channel [B--D]. Control bit, when set to logic 0, causes the default value to be inserted into the S1 byte in the transmit frame. Setting this bit to logic 1 causes the TTOAC value to be inserted into the S1 byte. TTOAC_S1[A] is valid for STS-48/ STM-16 mode. Transmit TOAC D4 to D12 Byte Control Channel [B--D]. Control bit, when set to logic 0, causes the default value to be inserted into the D4 to D12 bytes in the transmit frame. Setting this bit to logic 1 causes the TTOAC value to be inserted into the D4 to D12 bytes. TTOAC_D4TO12[A] is valid for STS-48/STM-16 mode. Transmit TOAC D1 to D3 Byte Control Channel [B--D]. Control bit, when set to logic 0, causes the default value to be inserted into the D1 to D3 bytes in the transmit frame. Setting this bit to logic 1 causes the TTOAC value to be inserted into the D1 to D3 bytes. TTOAC_D1TO3[A] is valid for STS-48/STM-16 mode. Transmit TOAC F1 Byte Control Channel [B--D]. Control bit, when set to logic 0, causes the default value to be inserted into the F1 byte in the transmit frame. Setting this bit to logic 1 causes the TTOAC value to be inserted into the F1 byte. TTOAC_F1[A] is valid for STS-48/ STM-16 mode. Transmit TOAC E1 Byte Control Channel [B--D]. Control bit, when set to logic 0, causes the default value to be inserted into the E1 byte in the transmit frame. Setting this bit to logic 1 causes the TTOAC value to be inserted into the E1 byte. TTOAC_E1[A] is valid for STS-48/ STM-16 mode. Reset Default 0
8
TTOAC_D4TO12[B--D]
0
7
TTOAC_D1TO3[B--D]
0
6
TTOAC_F1[B--D]
0
5
TTOAC_E1[B--D]
0
182
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 82. Registers 0x0430, 0x0432, 0x0434: Transmit Control Port [B--D] (R/W) (continued) Reset default of registers = 0x0003. Address (Hex) 0430, 0432, 0434 Bit # 4 Name TAPSBABBLEINS[B--D] Function Transmit APS Babble Insert Channel [B--D]. Control bit, when set to 1, causes an inconsistent APS byte (K1[7:0], K2[7:3]) to be inserted into the outgoing STS-M frame until this register is reset to 0. Transmit M1 Error Insert [B--D]. Once this register is set to 1, an error will be inserted continuously into the outgoing M1 byte until this register is reset to 0. In STS-48/STM-16 mode, only TM1_ERR_INS is valid. Transmit M1 REI-L Inhibit Channel [B--D]. Active-high to inhibit automatic insertion of REI-L (MS-REI). In STS-48/STM-16 mode, only TM1_REIL_INH is valid. Transmit F1 Insert Control Channel [B--D]. Control bit, when set to a logic 1, inserts the value in TF1DINS[7:0] into the outgoing F1 byte in the STS-M frame; otherwise, the insert value depends on TTOAC_F1 register. TF1INS[A] is valid in STS-48/STM-16 mode. Transmit S1 Insert Control Channel [B--D]. Control bit, when set to a logic 1, inserts the value in TS1DINS[7:0] into the outgoing S1 byte in the STS-M frame; otherwise, the insert value depends on TTOAC_S1 register. TS1INS[A] is valid in STS-48/STM-16 mode. Reset Default 0
3
TM1_ERR_INS[B--D]
0
2
TM1_REIL_INH[B--D]
0
1
TF1INS[B--D]
1
0
TS1INS[B--D]
1
Agere Systems Inc.
183
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 83. Registers 0x0436--0x0439: Transmit Control (R/W) Reset default of registers = 0xC000. Address (Hex) 0436--0439 Bit # 15 Name TAPSINS[A--D] Function Transmit APS Software Insert. When set to 1, the value in registers TK1DINS[7:0] and TK2DINS[7:3] will be inserted into K1[7:0] and K2[7:3] in the transmit frame. When set to 0, a value of all zeros will be inserted. Transmit K2 Software Insert. When set to logic 1, the value in registers TK2DINS[2:0] will be inserted into K2[2:0] in the transmit frame; otherwise, hardware insert is enabled for RDI-L (110) insertion. Reserved. These bits must be written to their reset default value (00). Force Line AIS in the Selected Output Time Slot. Active-high. For STS-3/STM-1, the index [0:2] corresponds to time slot 1-2-3; for STS-12/ STM-4, the index[0:11] corresponds to time slot 1-4-7-10-2-5-8-11-3-6-9-12; and for STS-48/ STM-16, the index [A][0:11] is for time slot 1-1325-37-2-14-26-38-3-15-27-39, [B][0:11] for 416-28-40-5-17-29-41-6-18-30-42, [C][0:11] for 7-19-31-43-8-20-32-44-9-21-33-45, and [D][0:11] for 10-22-34-46-11-23-35-47-12-2436-48. Reset Default 1
14
TK2SINS[A--D]
1
13--12 11--0
-- TAISLINS[A--D][11:0]
00 0x000
184
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 84. Registers 0x043A--0x0451: OHP Signal Degrade BER Algorithm Parameters (R/W) Reset default of registers = 0x0000. Notes: OHP_SDNSSET[A--D][2:0] are located in registers 0x043B, 0x043D, 0x043F, and 0x0441, respectively. OHP_SDNSCLEAR[A--D][2:0] are located in registers 0x0447, 0x0449, 0x044B, and 0x044D, respectively. Address (Hex) Bit # Name OHP_SDNSSET [A--D][18:3] Function Reset Default 0x0000 0 0000 0000
043A, 043C, 15--0 043E, 0440 043B, 043D, 15 043F, 0441 14--7
6--3 2--0 0442--0445 15--0 0446, 0448, 044A, 044C 0447, 0449, 044B, 044D 15--0 15 14--7
6--3 2--0 044E--0451 15--0
Signal Degrade Ns Set [18:3]. Number of frames in a monitoring block for SD. -- Reserved. This bit must be written to its reset default value (0). OHP_SDMSET[A--D][7:0] Signal Degrade M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then signal degrade (SD) is set. OHP_SDLSET[A--D][3:0] Signal Degrade L Set. Error threshold for determining if a monitoring block is bad. OHP_SDNSSET[A--D][2:0] Signal Degrade Ns Set [2:0]. Number of frames in a monitoring block for SD. OHP_SDBSET[A--D][15:0] Signal Degrade B Set. Number of monitoring blocks. Signal Degrade Ns Clear [18:3]. Number of OHP_SDNSCLEAR frames in a monitoring block for SD. [A--D][18:3] -- Reserved. This bit must be written to its reset default value (0). Signal Degrade M Clear. Threshold of the OHP_SDMCLEAR number of bad monitoring blocks in an observa[A--D][7:0] tion interval. If the number of bad blocks is below this threshold, then SD (signal degrade) is cleared. Signal Degrade L Clear. Error threshold for OHP_SDLCLEAR determining if a monitoring block is bad. [A--D][3:0] Signal Degrade Ns Clear[2:0]. Number of OHP_SDNSCLEAR frames in a monitoring block for SD. [A--D][2:0] Signal Degrade B Clear. Number of monitoring OHP_SDBCLEAR blocks. [A--D][15:0]
0x0 000 0x0000 0x0000 0 0000 0000
0x0 000 0x0000
Agere Systems Inc.
185
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 85. Registers 0x0452--0x0469: OHP Signal Fail BER Algorithm Parameters (R/W) Reset default of registers = 0x0000. Notes: OHP_SFNSSET[A--D][2:0] are located in registers 0x0453, 0x0455, 0x0457, and 0x0459, respectively. OHP_SDNSCLEAR[A--D][2:0] are located in registers 0x045F, 0x0461, 0x0463, 0x0465, respectively. Address (Hex) 0452, 0454, 0456, 0458 0453, 0455, 0457, 0459 Bit # 15--0 15 14--7 Name OHP_SFNSSET [A--D][18:3] -- Function Reset Default 0x0000 0 0000 0000
6--3
2--0
045A--045D 15--0
045E, 0460, 0462, 0464 045F, 0461, 0463, 0465
15--0 15 14--7
6--3 2--0 0466--0469 15--0
Signal Fail Ns Set [18:3]. Number of frames in a monitoring block for SF. Reserved. This bit must be written to its reset default value (0). OHP_SFMSET[A--D][7:0] Signal Fail M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then SF (signal fail) is set. (See Table 86, page 187, for register settings in terms of corresponding BER.) OHP_SFLSET[A--D][3:0] Signal Fail L Set. Error threshold for determining if a monitoring block is bad. (See Table 86, page 187, for register settings in terms of corresponding BER.) OHP_SFNSSET[A--D][2:0] Signal Fail Ns Set [2:0]. Number of frames in a monitoring block for SF. (See Table 86, page 187, for register settings in terms of corresponding BER.) OHP_SFBSET[A--D][15:0] Signal Fail B Set. Number of monitoring blocks. (See Table 86, page 187, for register settings in terms of corresponding BER.) Signal Fail Ns Clear [18:3]. Number of frames OHP_SFNSCLEAR [A--D][18:3] in a monitoring block for SF. -- Reserved. This bit must be written to its reset default value (0). OHP_SFMCLEAR Signal Fail M Clear. Threshold of the number [A--D][7:0] of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then SF (signal fail) is cleared. Signal Fail L Clear. Error threshold for deterOHP_SFLCLEAR [A--D][3:0] mining if a monitoring block is bad. OHP_SFNSCLEAR Signal Fail Ns Clear [2:0]. Number of frames [A--D][2:0] in a monitoring block for SF. OHP_SFBCLEAR Signal Fail B Clear. Number of monitoring [A--D][15:0] blocks.
0x0
000
0x0000
0x0000 0 0x00
0x0 000 0x0000
186
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 86 and Table 87 show values of Ns, L, M, and B for STS-3/STM-1, STS-12/STM-4, and STS-48/STM-16 to set and clear the BER indicator. SF registers are 0x0452--0x0469, and SD registers are 0x043A--0x0451. All SF/SD set and clear values are hexadecimal. Table 86. Ns, L, M, and B Values to Set the BER Indicator
Mode BER SF/SD Set Values Actual Number of Frames B* 3D 7 7 7 9 9 F -- -- A 8 8 8 8 8 -- -- 3F 3F E E E A -- 62 48 384 3840 47250 465000 4160000 -- 64 22 117 1152 11475 114750 1147500 -- 64 64 320 480 4710 46500 333300 -- Probability of Detecting L Errors (%) @BER 99.96 72.70 71.34 71.34 69.74 68.07 56.90 -- 100.00 84.92 67.93 66.19 65.75 65.75 65.75 -- 100.00 99.95 90.60 77.55 75.80 74.58 82.92 -- @BER/2 85.13 7.28 10.08 10.09 9.44 8.82 11.25 -- 88.43 9.64 7.17 6.66 6.53 6.53 6.53 -- 100.00 58.97 16.25 13.09 12.15 11.54 19.71 -- Probability of Declaring SF/SD (%) @BER 97.68 96.06 95.19 95.19 95.07 98.47 96.52 -- 100.00 98.38 96.48 95.46 95.16 95.16 95.16 -- 100.00 96.89 96.47 96.69 95.17 98.09 97.29 -- @BER/2 0.00 0.16 0.52 0.52 0.13 0.82 0.60 -- 0.04 0.00 0.25 0.19 0.18 0.18 0.18 -- 100.00 0.00 0.00 0.00 0.00 0.01 0.18 -- IntegraMaximum tion Time Number (s) of Frames 0.008 0.013 0.1 1 10 83 667 -- 0.008 0.008 0.025 0.25 2.5 21 167 -- 0.008 0.008 0.008 0.0625 0.625 5.2 42 -- 64 104 800 8000 80000 664000 5336000 -- 64 64 200 2000 20000 168000 1336000 -- 64 64 64 500 5000 41600 336000 --
Ns* STS-3/ STM-1 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-12/ STM-4 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-48/ STM-16 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 1 6 30 1E0 1275 B5A4 3F7A0 -- -- 2 D 80 4FB 31CE 1F20C -- -- 1 5 20 13A C1C 765C --
L* 6 9 7 7 7 7 4 -- -- B 8 8 8 8 8 -- -- E A 7 7 7 6 --
M* 3D 3 3 3 4 3 5 -- -- 6 3 3 3 3 3 -- -- 3F 35 8 8 7 6 --
* These are the numbers to be provisioned in TDAT042G5. The actual values of the BER algorithm are 1 greater than the actual value shown. s These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).
Agere Systems Inc.
187
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 87. Ns, L, M, and B Values to Clear the BER Indicator
Mode BER SF/SD Set Values Actual Number of Frames B* -- 7 7 7 7 9 9 F -- 6 A 8 8 8 8 8 -- E 3F 13 13 13 A -- 8 48 384 3840 47250 465000 4160000 -- 7 22 117 1152 11475 114750 1147500 -- 64 15 320 640 6280 62000 333300 Probability of Detecting L Errors (%) @BER*5 -- 85.13 93.01 84.42 84.42 83.66 82.86 46.31 -- 100.00 98.36 87.99 87.34 87.17 87.17 87.17 -- 100.00 100.00 95.07 87.34 86.52 85.95 84.89 @BER -- 0.39 11.33 6.84 6.84 6.59 6.35 1.48 -- 51.54 20.51 8.23 7.94 7.87 7.87 7.87 -- 45.99 60.11 7.28 7.94 7.61 7.38 7.00 Probability of Clearing SF/SD (%) @BER*5 -- 0.27 0.01 0.34 0.34 0.22 0.03 0.50 -- 0.00 0.07 0.02 0.02 0.03 0.03 0.03 -- 0.00 0.00 0.00 0.00 0.00 0.00 0.03 @BER -- 100.00 99.21 99.88 99.88 99.98 99.75 99.84 -- 99.03 100.00 99.59 99.64 99.65 99.65 99.65 -- 99.42 99.47 99.98 99.94 99.95 99.96 99.95 IntegraMaximum tion Time Number (s) of Frames -- 0.013 0.1 1 10 83 667 6670 -- 0.008 0.025 0.25 2.5 21 167 1670 -- 0.008 0.008 0.0625 0.625 5.2 42 420 -- 104 800 8000 80000 664000 5336000 53360000 -- 64 200 2000 20000 168000 1336000 13360000 -- 64 64 500 5000 41600 336000 3360000
Ns* STS-3/ STM-1 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-12/ STM-4 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-48/ STM-16 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 -- 1 6 30 1E05 1275 B5A4 3F7A0 -- 1 2 D 80 4FB 31CE 1F20C -- 1 5 20 13A C1C 765C
L* -- 6 2 2 2 2 2 2 -- 7 2 2 2 2 2 2 -- 2 3 2 2 2 2
M* -- 3 3 3 3 4 3 2 -- 6 8 3 3 3 3 3 -- D D 6 6 6 4
* These are the numbers to be provisioned inTDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown. These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).
188
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 88. Registers 0x046A--0x047D: B1, B2, M1 Error Count (RO) Reset default of registers = 0x0000. Address (Hex) Bit # Name B1ECNT[A--D][15:0] Function B1 Error Count. The value of the internal running counter is transferred into this holding register at the 0-to-1 transition of PMRST signal. The counter is then reset to 0. Reserved. These bits must be written to their reset default value (0000000000). B2 Error Count [21:16]. The value of the internal running counter is transferred into this holding register at the 0-to-1 transition of PMRST signal. The counter is then reset to 0. B2 Error Count [15:0]. Same description as above. Reserved. These bits must be written to their reset default value (00000000000). M1 Error Count [20:16]. The value of the internal running counter is transferred into this holding register at the 0-to-1 transition of PMRST signal. The counter is then reset to 0. M1 Error Count [15:0]. Same description as above. Reset Default 0x0000
046A--046D 15--0
046E, 0470, 0472, 0474
15--6
--
5--0
B2ECNT[A--D][21:16]
00 0000 0000 000000
046F, 0471, 0473, 0475 0476, 0478, 047A, 047C
15--0 15--5
B2ECNT[A--D][15:0] --
0x0000 000 0000 0000 00000
4--0
M1ECNT[A--D][20:16]
0477, 0479, 047B, 047D
15--0
M1ECNT[A--D][15:0]
0x0000
Table 89. Registers 0x047E--0x0485: Transmit F1, S1, K2, K1 OH Insert Value (R/W) Reset default of registers = 0x0000. Address (Hex) 047E, 0480, 0482, 0484 Bit # 15--8 7--0 047F, 0481, 0483, 0485 15--8 7--0 Name TF1DINS[A--D][7:0] TS1DINS[A--D][7:0] TK2DINS[A--D][7:0] TK1DINS[A--D][7:0] Function Transmit F1 Byte Value. Register value is inserted into the transmit F1 byte. Transmit S1 Byte Value. Register value is inserted into the transmit S1 byte. Transmit K2 Byte Value. Register value is inserted into the transmit K2 byte. Transmit K1 Byte Value. Register value is inserted into the transmit K1 byte. Reset Default 0x00 0x00 0x00 0x00
Agere Systems Inc.
189
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
OHP Registers (continued)
Table 90. Registers 0x0486--0x0491: Receive F1, S1, K2, K1 Monitor Value (RO) Reset default of registers = 0x0000. Address (Hex) 0486, 0489, 048C, 048F 0487, 048A, 048D, 0490 0488, 048B, 048E, 0491 Bit # 15--8 7--0 15--8 7--0 15--8 7--0 Name F1DMON1[A--D][7:0] F1DMON0[A--D][7:0] K2DMON[A--D[7:0] K1DMON[A--D][7:0] -- S1DMON[A--D][7:0] Function Receive F1 Previous Monitor Value. Receive F1 Current Monitor Value. Receive K2 Monitor Value. Receive K1 Monitor Value. Reserved. These bits must be written to their reset default value (0x00). Receive S1 Monitor Value. Reset Default 0x00 0x00 0x00 0x00 0x00 0x00
Table 91. Registers 0x0492--0x04F9: Receive J0 Monitor Value (RO) Reset default of registers = 0x0000. Address (Hex) 0492--0499 04B2--04B9 04D2--04D9 04F2--04F9 Bit # 15--0 15--0 15--0 15--0 Name RJ0DMON[A][1--16][7:0] RJ0DMON[B][1--16][7:0] RJ0DMON[C][1--16][7:0 RJ0DMON[D][1--16][7:0] Function Receive J0 Monitor Value. Registers capture a 16-byte sequence from the J0 byte of each channel. In STS-48/STM-16 mode, J0DMON[A][1--16][7:0] is valid for J0 bytes while J0DMON[B--D][1][7:0] are used for Z0DMON[B--D][1][7:0]. Reset Default 0x0000
Table 92. Registers 0x0512--0x0579: Transmit J0 Insert Value (R/W) Reset default of registers = 0x0000. Address (Hex) 0512--0519 0532--0539 0552--0559 0572--0579 Bit # 15--0 15--0 15--0 15--0 Name TJ0DINS[A][1--16][7:0] TJ0DINS[B][1--16][7:0] TJ0DINS[C][1--16][7:0] TJ0DINS[D][1--16][7:0] Function Transmit J0 Insert Value. Registers allow a 16-byte sequence to be inserted into the J0 byte of each channel. In STS-48/STM-16 mode, TJ0DINS[A][1--16][7:0] is valid for J0 bytes while TJ0DINS[B--D][1][7:0] are used for TZ0DINS[B--D][1][7:0]. Reset Default 0x0000
190
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
OHP Registers (continued)
Table 93. Registers 0x05AA--0x05C1: Transmit Z0 Insert Value (R/W) Reset default of registers = 0x0000. Address (Hex) 05AA-- 0x05C1 Bit # -- Name Function Reset Default 0x0000
05AA
15--8 7--0
05AB--05AF 15--0 05B0 15--8 7--0 05B1--05B5 15--0 05B6 15--8 7--0 05B7--05BB 15--0 05BC 15--8 7--0 05BD--05C1 15--0
TZ0DINS[A--D][2--12][7:0] Transmit Z0 Insert Value. Register values are inserted into the transmit Z0 bytes. In STS-3/ STM-1 mode, TZ0DINS[A--D][2--3] are valid; in STS-12/STM-4 mode, TZ0DINS[A--D][2--12] are valid; and in STS-48/STM-16 mode, all 44 TZ0DINS bytes plus TJ0DINS[B--D][1][7:0] are used for 47 Z0 byte values. TZ0DINS[A][2][7:0] Transmit Z0 Insert A2 Value. -- Reserved. These bits must be written to their reset default value (0x00). TZ0DINS[A][3--12][7:0] Transmit Z0 Insert [A][3--12] Value. TZ0DINS[B][2][7:0] Transmit Z0 Insert B2 Value. -- Reserved. These bits must be written to their reset default value (0x00). TZ0DINS[B][3--12][7:0] Transmit Z0 Insert [B][3--12] Value. TZ0DINS[C][2][7:0] Transmit Z0 Insert C2 Value. -- Reserved. These bits must be written to their reset default value (0x00). TZ0DINS[C][3--12][7:0] Transmit Z0 Insert [C][3--12] Value. TZ0DINS[D][2][7:0] Transmit Z0 Insert D2 Value. -- Reserved. These bits must be written to their reset default value (0x00). TZ0DINS[D][3--12][7:0] Transmit Z0 Insert [D][3--12] Value.
0x00 0x00 0x0000 0x00 0x00 0x0000 0x00 0x00 0x0000 0x00 0x00 0x0000
Table 94. Register 0x05C2: Scratch Register (R/W) Reset default of register = 0x0000. Address (Hex) 05C2 Bit # 15--0 Name OHP_SCRATCH[15:0] Function Scratch Register. Allows the control system to verify read and write operations to the device without affecting device operation. Reset Default 0x0000
Agere Systems Inc.
191
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
PT Registers
This section gives a brief description of each register bit and its functionality. All algorithms are described in the main text of the document. The abbreviations after each register indicate if the register is read only (RO), read/write (R/W), write only (WO), or clear-on-read or clear-on-write (COR/W). 0x indicates a hexadecimal value in the Reset Default column. Otherwise, the entry is binary. This is true for every register table in the document. Table 95. Register 0x0800: PT Macrocell Version Number (RO) Reset default of register = 0x0000. Address (Hex) 0800 Bit # 15--8 7--0 Name -- PT_VERSION[7:0] Function Reserved. These bits must be written to their reset default value (0x00). Macrocell Version Number. The version of the macrocell will increment each time a change occurs to the macrocell functionality. Reset Default 0x00 0x00
Table 96. Register 0x0801: PT Interrupt (RO) Reset default of register = 0x0000. Address (Hex) 0801 Bit # 15--4 3 2 1 0 Name -- PT_INT[D] PT_INT[C] PT_INT[B] PT_INT[A] Function Reserved. These bits must be written to their reset default value (0x000). Interrupt. Active-high interrupt bit on a per-port basis. These bits are the ORing of all event and delta bits associated with a particular port. An event or delta bit contribution can be inhibited from contributing to the interrupt by setting the appropriate mask bit. Reset Default 0x000 0x0
Table 97. Registers 0x0802, 0x080F, 0x081C, 0x0829 and 0x0803, 0x0810, 0x081D, 0x082A: PT Delta/Event Parameters (COR/W) Reset default of registers = 0x0000. Address (Hex) 0802, 080F, 081C, 0829 Bit # 15 Name RJ1DMONMIS[A--D]E Function Receive J1 Data Monitor Mismatch. Event bit indicates a mismatch has occurred between the expected J1 value and the received value. Reserved. These bits must be written to their reset default value (000). Receive Pointer Interpretation Hardware Delta. Delta bits indicate a change of the associated state bit. Reset Default 0
14--12 11--0
-- RPIHD[A--D][1--12]
000 0x000
192
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
PT Registers (continued)
Table 97. Registers 0x0802, 0x080F, 0x081C, 0x0829 and 0x0803, 0x0810, 0x081D, 0x082A: PT Delta/Event Parameters (COR/W) (continued) Reset default of registers = 0x0000. Address (Hex) 0803, 0810, 081D, 082A Bit # 15 14--11 10 9 8 7 6 5 4 3 Name TRDIPD[A--D] -- RZ5DMOND[A--D] RZ4DMOND[A--D] RZ3DMOND[A--D] RH4DMOND[A--D] RF2DMOND[A--D] RRDIPDMOND[A--D] RC2DMOND[A--D] RUC2D[A--D] Function Transmit RDI-P Delta. Delta bit indicates a change of the associated state byte. Reserved. These bits must be written to their reset default value (0000). Receive Z5 Data Monitor Delta. Delta bit indicates a change of the associated state byte. Receive Z4 Data Monitor Delta. Delta bit indicates a change of the associated state byte. Receive Z3 Data Monitor Delta. Delta bit indicates a change of the associated state byte. Receive H4 Data Monitor Delta. Delta bit indicates a change of the associated state byte. Receive F2 Data Monitor Delta. Delta bit indicates a change of the associated state byte. Receive RDI-P Data Monitor Delta. Delta bit indicates a change of the associated state bit. Receive C2 Data Monitor Delta. Delta bit indicates a change of the associated state byte. Receive Unequipped C2 Values Delta. Delta bit indicates a change of the associated state bit. Receive Path Payload Label Mismatch Delta. Delta bit indicates a change of the associated state bit. Receive Signal Degrade Delta. Delta bit indicates a change of the associated state bit. Receive Signal Fail Delta. Delta bit indicates a change of the associated state bit. Reset Default 0 0000 0 0 0 0 0 0 0 0
2
RPPLMD[A--D]
0
1 0
RSDD[A--D] RSFD[A--D]
0 0
Agere Systems Inc.
193
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
PT Registers (continued)
Table 98. Registers 0x0836--0x083B, 0x0868--0x0887, 0x0888--0x088D, 0x08BA--0x08D9, 0x08DA--0x08DF, 0x090C--0x092B, 0x092C--0x0931, 0x095E--0x097D: PT State Registers (RO) Reset default of registers 0x0836, 0x0837, 0x0888, 0x0889, 0x08DA, 0x08DB, 0x092C, 0x092D = 0x0AAA. Reset default of all other registers = 0x0000. Address (Hex) 0836, 0888, 08DA, 092C Bit # 15--14 13--12 11--0 Name RSSDRP[A--D][1:0] -- RPIH_STATE[A--D] [1--6][1:0] Function Receive SS Drop Values. SS bit values from the four selected ports. Reserved. These bits must be written to their reset default value (00). Receive Pointer Interpretation Hardware State[Bits 1--6]. Software access to the 48 STS-1 PI state values. 00 = Normal; 01 = Concat; 10 = LOP; 11 = AIS. Reserved. These bits must be written to their reset default value (0x0). Receive Pointer Interpretation Hardware State[Bits 7--12]. Software access to the 48 STS-1 PI state values. 00 = Normal; 01 = Concat; 10 = LOP; 11 = AIS. Transmit RDI-P State. State bits indicating the value of the inserted RDI-P value. Reserved. These bits must be written to their reset default value (000000). Receive RDI-P Data Monitor State. State bits indicating the value of the G1[3:1] bits. Receive Unequipped C2 Value State. State bit indicating an unequipped value (0x00) has been detected in the C2 byte. Receive Path Payload Label Mismatch State. State bit indicating a mismatch occurred (logic 1). Receive Signal Degrade State Bit. State bit indicating the state of the BER algorithm. 0 = within BER programmed, 1 = exceed BER threshold programmed. Receive Signal Fail State Bit. State bit indicating the state of the BER algorithm. 0 = within BER programmed, 1 = exceed BER threshold programmed. Receive F2 Byte Data Monitor. State byte indicating the value of the validated F2 byte. Receive C2 Data Monitor. State byte holding the accepted value for the monitored C2 byte. Reset Default 00 00 0xAAA
0837, 0889, 08DB, 092D
15--12 11--0
-- RPIH_STATE[A--D] [7--12][1:0]
0x0 0xAAA
0838, 088A, 08DC, 092E
15--13 12--7 6--4 3
TRDIPINT[A--D][2:0] -- RRDIPDMON[A--D][2:0] RUC2VS[A--D]
000 000000 000 0
2
RPPLMS[A--D]
0
1
RSDS[A--D]
0
0
RSF[A--D]
0
0839, 088B, 08DD, 092F
15--8 7--0
RF2DMON[A--D][7:0] RC2DMON[A--D][7:0]
0x00 0x00
194
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
PT Registers (continued)
Table 98. Registers 0x0836--0x083B, 0x0868--0x0887, 0x0888--0x088D, 0x08BA--0x08D9, 0x08DA-- 0x08DF, 0x090C--0x092B, 0x092C--0x0931, 0x095E--0x097D: PT State Registers (RO) (continued) Reset default of registers 0x0836, 0x0837, 0x0888, 0x0889, 0x08DA, 0x08DB, 0x092C, 0x092D = 0x0AAA. Reset default of all other registers = 0x0000. Address (Hex) 083A, 088C, 08DE, 0930 083B, 088D, 08DF, 0931 0868--0887 08BA--08D9 090C--092B 095E--097D Bit # 15--8 7--0 15--8 7--0 15--0 15--0 15--0 15--0 Name RZ3DMON[A--D][7:0] RH4DMON[A--D][7:0] RZ5DMON[A--D][7:0] RZ4DMON[A--D][7:0] RJ1DMON[A][1--64][7:0] RJ1DMON[B][1--64][7:0] RJ1DMON[C][1--64][7:0] RJ1DMON[D][1--64][7:0] Function Receive Z3 Byte Data Monitor. State byte indicating the value of the validated Z3 byte. Receive H4 Byte Data Monitor. State byte indicating the value of the validated H4 byte. Receive Z5 Byte Data Monitor. State byte indicating the value of the validated Z5 byte. Receive Z4 Byte Data Monitor. State byte indicating the value of the validated Z4 byte. Receive J1 Data Monitor Values. Status registers for J1 storage. Reset Default 0x00 0x00 0x00 0x00 0x0000
Table 99. Register 0x097E: PT Interrupt Mask Control (R/W) Reset default of register = 0x000F. Address (Hex) 097E Bit # 15--14 Name PT_FUNCMODE Function Path Terminator Functional Mode. These bits set the functional mode of the path terminator. Only the values below are valid. Bit 15 Bit 14 PT Function 0 1 0 0 normal mode Reset Default 00
13--4
--
pass-through mode (ATM/SDL over fiber) Reserved. These bits must be written to their reset default value (0000000000). Interrupt Masks. Mask bits to inhibit the associated composite delta/event bits for each port from contributing to the interrupt signal from the PT macro. Setting these bits to 1 masks the interrupts.
3 2 1 0
PTINTM[D] PTINTM[C] PTINTM[B] PTINTM[A]
00 0000 0000 0xF
Agere Systems Inc.
195
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
PT Registers (continued)
Table 100. Registers 0x097F--0x0980, 0x098C--0x098D, 0x0999--0x099A, 0x09A6--0x09A7: PT Interrupt Mask Control (R/W) Reset default of registers 0x097F, 0x098C, 0x0999, 0x09A6 = 0x8FFF. Reset default of registers 0x0980, 0x098D, 0x099A, 0x09A7 = 0xFFFF. Address (Hex) 097F, 098C, 0999, 09A6 Bit # 15 Name RJ1DMONMISM[A--D] Function (All Mask Bits Are Active-High) Receive J1 Data Monitor Mismatch Mask. Mask bit to inhibit the associated event bit from contributing to the interrupt pin (INT). Reserved. These bits must be written to their reset default value (000). Receive Pointer Interpretation Hardware Mask. Mask bits to inhibit the associated delta bits from contributing to the interrupt pin (INT). Reset Default 1
14--12 11--0
-- RPIH_STATEM[A--D] [1--12]
000 0xFFF
196
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
PT Registers (continued)
Table 100. Registers 0x097F--0x0980, 0x098C--0x098D, 0x0999--0x099A, 0x09A6--0x09A7: PT Interrupt Mask Control (R/W) (continued) Reset default of registers 0x097F, 0x098C, 0x0999, 0x09A6 = 0x8FFF. Reset default of registers 0x0980, 0x098D, 0x099A, 0x09A7 = 0xFFFF. Address (Hex) 0980, 098D, 099A, 09A7 Bit # 15 Name TRDIPINTM[A--D] Function (All Mask Bits Are Active-High) Transmit RDI-P Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Reserved. These bits must be written to their reset default value (1111). Receive Z5 Data Monitor Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Receive Z4 Data Monitor Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Receive Z3 Data Monitor Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Receive H4 Data Monitor Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Receive F2 Data Monitor Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Receive RDI-P Data Monitor Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Receive C2 Value Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Receive Unequipped C2 Values Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Receive Path Payload Label Mismatch Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Receive Signal Degrade Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Receive Signal Fail Mask. Mask bit to inhibit the associated delta bit from contributing to the interrupt pin (INT). Reset Default 1
14--11 10
-- RZ5DMONM[A--D]
1111 1
9
RZ4DMONM[A--D]
1
8
RZ3DMONM[A--D]
1
7
RH4DMONM[A--D]
1
6
RF2DMONM[A--D]
1
5
RRDIPDMONM[A--D]
1
4
RC2DMONM[A--D]
1
3
RUC2VM[A--D]
1
2
RPPLMM[A--D]
1
1
RSDM[A--D]
1
0
RSFM[A--D]
1
Agere Systems Inc.
197
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
PT Registers (continued)
Table 101. Registers (0x09B3, 0x09BF, 0x09CB, 0x09D7, 0x09E3), (0x09EF, 0x09FB, 0x0A07, 0x0A14, 0x0A20), (0x0A2C, 0x0A38, 0x0A44, 0x0A50, 0x0A5C), (0x0A68, 0x0A74, 0x0A80, 0x0A8C, 0x0A98): Error Counters (RO) Reset default of registers = 0x0000. Address (Hex) Bit # Name -- RPI_INC[A--D][10:0] Function Reserved. These bits must be written to their reset default value (00000). Receive Pointer Interpreter Increment Counter. Counter that counts the number of increments that occurred on the selected time slot. Reserved. These bits must be written to their reset default value (00000). Receive Pointer Interpreter Decrements Counter. Counter that counts the number of decrements that occurred on the selected time slot. Reserved. These bits must be written to their reset default value (000). Receive Pointer Interpreter NDF Counter. Counter that counts the number of set NDF (1001) values received on the selected time slot. B3 Error Count. Number of B3 errors detected on the monitored STS-1 time slots. Receive Remote Error Indication--Path Error Count. Count of the number of B3 errors detected in the G1[7:4] nibble. Reset Default 00000 000 0000 0000 00000 000 0000 0000 000 0 0000 0000 0000 0x0000 0x0000
09B3, 09EF, 15--11 0A2C, 0A68 10--0
09BF, 09FB, 15--11 0A38, 0A74 10--0
-- RPI_DEC[A--D][10:0]
09CB, 0A07, 15--13 0A44, 0A80 12--0
-- RNDFCNT[A--D][12:0]
09D7, 0A14, 0A50, 0A8C 09E3, 0A20, 0A5C, 0A98
15--0 15--0
RB3ERRCNT[A--D][15:0] RREIPERRCNT [A--D][15:0]
Table 102. Register 0x0AA4: PT One-Shot Control Parameters (WO) Address (Hex) 0AA4 Bit # 15--12 11--8 7--4 3--0 Name SDCLEAR[A--D] SDSET[A--D] SFCLEAR[A--D] SFSET[A--D] Function Signal Degrade Clear. One-shot clear control. Signal Degrade Set. One-shot set control. Signal Fail Clear. One-shot clear control. Signal Fail Set. One-shot set control. Reset Default -- -- -- --
198
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
PT Registers (continued)
Table 103. Registers 0x0AA6--0x0AAD, 0x0AAE, 0x0AB5, 0x0AB6--0x0ABD, 0x0ABE--0x0AC5: PT Control Parameters (R/W) Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0x1200. Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000. Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF. Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000. Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000. Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA. Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA. Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333. Address (Hex) Bit # Name RPOHMONSEL [A--D][3:0] Function Receive POH Monitor Select. Control bit selects which of the 12 time-slot POH bytes are monitored in the associated data stream. A total of four STS-Nc streams can be monitored at any one time. Only values from 0001 (time slot 1) to 1100 (time slot 12) are valid. For quad OC-3 and quad OC-12 mode, use the default value 0001. Reserved. These bits must be written to their reset default value (00). Receive Concatenation State: Use All STS-1 Time Slots or Just the First One. If set to 1, all STS-1 time slots are used. If set to 0, a higher level state machine (CONC) is used to process the individual states from the associated time slots. The higher-order state machine is defined as follows. CONC State Equations (ETSI and G.783 (SDH)):
States AISX NORMX INCX* DECX* NDFX* LOPX Concatenation States (bold states are reported) AIS#1 AND AISC#2 AND . . . AISC#X NORM#1 AND CONC#2 AND . . . CONC#N INC#1 AND CONC#2 AND . . . CONC#N DEC#1 AND CONC#2 AND . . . CONC#N NDF#1 AND CONC#2 AND . . . CONC#N (Any other): NOT AISX AND NOT NORMX AND NOT INCX AND NOT DECX AND NOT NDFX
* States INCX, DECX, and NDFX are considered the same as NORMX state in terms of reporting.
Reset Default 0001
0AA6, 0AAE, 15--12 0AB6, 0ABE
11--10 9
-- RCONC_ALLOR FIRST[A--D]
00 1
8--7
RJ1FRAMEA [A--D][1:0]
Receive J1 Frame Algorithm. Control bits, when set to 00 or 11 = no framing; 01 = SONET framing; 10 = SDH framing.
00
* These bits maintain the validated J1 byte, place 0x0000 into all other POH bytes, and invalidate the received payload so that no data is passed through the DE. These bits do not affect the transmit path and do not affect the transmitted G1 byte.
Agere Systems Inc.
199
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
PT Registers (continued)
Table 103. Registers 0x0AA6--0x0AAD, 0x0AAE, 0x0AB5, 0x0AB6--0x0ABD, 0x0ABE--0x0AC5: PT Control Parameters (R/W) (continued) Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0xF200. Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000. Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF. Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000. Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000. Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA. Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA. Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333 Address (Hex) 0AA6, 0AAE, 0AB6, 0ABE Bit # 6 Name RJ1DMPC[A--D] Function Receive J1 Dump Control. Control bit, when set to a logic 1, causes the device to store the J1 byte of the selected STS-1 time slot. Reserved. This bit must be written to its reset default value (0).* Receive B3 Bit/Block Count. Control bit, when set to a logic 0, causes the B3 error counter to count bit errors; otherwise, block errors are counted. Receive Increment/Decrement 6-or-8 Majority Voting. If programmed to a logic 0, uses 6 of 10 majority voting to determine a valid increment or decrement; otherwise, uses 8 of 10 majority voting. Reserved. These bits must be written to their reset default value (00). Remote Defect Indication Enhanced or 1-Bit Monitoring. Control bit, when set to a logic 1, causes the RDI-P to detect G1[3:1] bits for an enhanced failure code; otherwise, monitors G1[3] for a 1-bit code. Receive FORCE_LOP. Control bits, when set to a logic 1, force the associated time slot into the LOP state; otherwise, does nothing. Concatenation Indication Expected. Control bits, when set to 0 = do not expect associated time slot to be in CONC mode; otherwise, expect CONC mode. Reset Default 0
5 4
-- RB3BITBLKCNT[A--D]
0 0
3
RINCDEC_6OR8MAJ [A--D]
0
2--1 0
-- RDIPMON_ENH_OR1B [A--D]
00 0
0AA7, 0AAF, 15--12 0AB7, 0ABF 11--0
RFORCE_LOP[A--D] [1--4] CONCATI_EXPECTED [A--D][1--12]
0x0
0x000
* SS pointer interpretation algorithm is not implemented. These bits maintain the validated J1 byte, place 0x0000 into all other POH bytes, and invalidate the received payload so that no data is passed through the DE. These bits do not affect the transmit path and do not affect the transmitted G1 byte.
200
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
PT Registers (continued)
Table 103. Registers 0x0AA6--0x0AAD, 0x0AAE, 0x0AB5, 0x0AB6--0x0ABD, 0x0ABE--0x0AC5: PT Control Parameters (R/W) (continued) Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0xF200. Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000. Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF. Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000. Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000. Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA. Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA. Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333. Address (Hex) Bit # Name RFORCE_LOP[A--D] [5--8] MASK_CONCAT[A--D] [1--12] Function Receive FORCE_LOP. Control bits, when set to a logic 1, force the associated time slot into the LOP state; otherwise, does nothing.* MASK_CONCATENATION Expected Indication. When set, mask bits inhibit the generation of AIS when the selected time slot transitions to a state other than CONCAT_EXPECTED[A--D]. Receive FORCE_LOP. Control bits, when set to a logic 1, force the associated time slot into the LOP state; otherwise, does nothing.* Receive FORCE AIS. If set, control bits insert AIS-P into the selected STS-1 time slot.* Transmit REI-P Error Value. REI software error value. Error values are 1 to 8; all others are interpreted as no errors. Transmit RDI-P Software Insert. Control bit, when set, forces the value in TRDIPDINS[A--D][2:0] into the outgoing G1[3:1] bits. Reserved. This bit must be written to its reset default value (0). Transmit RDI-P LCD. Control bit, when clear, generates an LCD failure that causes an RDI-P generation. When set, no LCD failure is generated. LCD determination must be done via software. Transmit RDI-P PLM-P Inhibit. Control bit, when set, causes the PLM-P failure to not contribute to RDI-P generation. Reset Default 0x0
0AA8, 0AB0, 15--12 0AB8, 0AC0 11--0
0xFFF
0AA9, 0AB1, 15--12 0AB9, 0AC1 11--0 0AAA, 0AB2, 15--12 0ABA, 0AC2 11
RFORCE_LOP[A--D] [9--12] RFORCE_AIS[A--D] [1--12] Tx_REIP_VALUE [A--D][3:0] TRDIPSINS[A--D]
0x0
0x000 0x0
0
10 9
-- TRDIP_LCD[A--D]
0 0
8
TRDIP_PLMPINH[A--D]
0
* These bits maintain the validated J1 byte, place 0x0000 into all other POH bytes, and invalidate the received payload so that no data is passed through the DE. These bits do not affect the transmit path and do not affect the transmitted G1 byte.
Agere Systems Inc.
201
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
PT Registers (continued)
Table 103. Registers 0x0AA6--0x0AAD, 0x0AAE, 0x0AB5, 0x0AB6--0x0ABD, 0x0ABE--0x0AC5: PT Control Parameters (R/W) (continued) Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0xF200. Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000. Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF. Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000. Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000. Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA. Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA. Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333. Address (Hex) 0AAA, 0AB2, 0ABA, 0AC2 Bit # 7 Name TRDIP_UNEQUIPINH [A--D] Function Reset Default 0
6
5
4
3
2 1
0
Transmit RDI-P UNEQUIP Inhibit. Control bit, when set, causes the UNEQUIP failure to not contribute to RDI-P generation. TRDIP_LOPPINH[A--D] Transmit RDI-P LOP-P Inhibit. Control bit, when set, causes the LOP-P failure to not contribute to RDI-P generation. TRDIP_AISINH[A--D] Transmit RDI-P AIS-P Inhibit. Control bit, when set, causes the AIS-P failure to not contribute to RDI-P generation. TRDIP_ENH_OR1B[A--D] Transmit RDI-P Enhanced or 1-Bit Monitoring. Control bit, when set, causes enhanced failure code insert to occur on the G1[3:1] bits; otherwise, inserts a single bit failure code into G1[3]. TREIPERRINS[A--D] Transmit REI-P Error Insert. Control bit, when set, causes an error to be continuously injected into the G1[7:4] bits. TB3ERRINS[A--D] Transmit B3 Error Insert. Control bit, when set, causes the B3 value to be inverted. TJ1SINS[A--D] Transmit J1 Software Insert. Control bit, when set, causes the J1 byte stored in the TJ1DINS[A--D][1--64][7:0] register to be injected into the outgoing J1 byte; otherwise, inserts 0x00 into the J1 byte. -- Reserved. This bit must be written to its reset default value (0).
0
0
0
0
0 0
0
202
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
PT Registers (continued)
Table 103. Registers 0x0AA6--0x0AAD, 0x0AAE, 0x0AB5, 0x0AB6--0x0ABD, 0x0ABE--0x0AC5: PT Control Parameters (R/W) (continued) Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0xF200. Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000. Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF. Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000. Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000. Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA. Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA. Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333. Address (Hex) Bit # Name TPOHINSSEL[A--D][3:0] Function Transmit POH Insert Select. Control bits, when set, select the STS-1 time slot into which POH data is injected. Transmit H Bytes Software State. Control bits, when set to a logic 00 = normal state, 01 = CONC, 10 = unequipped, 11 = AIS. Continuous N Times Detect H4/Z3/Z4 Bytes. Control signal for detecting changes in state of the H4, Z3, and Z4 bytes. Valid values are 0 to 15. A value of 0 or 1 causes the data monitor byte to be updated every frame. A value of n, where 2 n 15, of these four bits means that the same value of the H4, Z3, or Z4 byte must be detected n times consecutively to declare a new value in the H4, Z3, or Z4 byte register. Transmit H Bytes Software State. Control bits, when set to a logic 00 = normal state, 01 = CONC, 10 = unequipped, 11 = AIS. Reset Default 0x1
0AAB, 0AB3, 15--12 0ABB, 0AC3 11--0
THx_STATE[A--D] [1--6][1:0] CNTDH4Z3Z4[A--D][3:0]
0xAAA
0AAC, 0AB4, 15--12 0ABC, 0AC4
0x3
11--0
THx_STATE[A--D] [7--12][1:0]
0xAAA
Agere Systems Inc.
203
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
PT Registers (continued)
Table 103. Registers 0x0AA6--0x0AAD, 0x0AAE, 0x0AB5, 0x0AB6--0x0ABD, 0x0ABE--0x0AC5: PT Control Parameters (R/W) (continued) Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0xF200. Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000. Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF. Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000. Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000. Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA. Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA. Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333. Address (Hex) Bit # Name CNTDZ5[A--D][3:0] Function Continuous N Times Detect Z5 Byte. Control signal for detecting changes in state of the Z5 byte. Valid values are 0 to 15. A value of 0 or 1 causes the data monitor byte to be updated every frame. A value of n, where 2 n 15, of these four bits means that the same value of the Z5 byte must be detected n times consecutively to declare a new value in the Z5 byte register. Continuous N Times Detect F2 Byte. Control signal for detecting changes in state of the F2 byte. Valid values are 0 to 15. A value of 0 or 1 causes the data monitor byte to be updated every frame. A value of n, where 2 n 15, of these four bits means that the same value of the F2 byte must be detected n times consecutively to declare a new value in the F2 byte register. Continuous N Times Detect RDI-P. Control signal for detecting changes in state of the G1[3:1] bits. Valid values are 0 to 15. A value of 0 or 1 causes the data monitor byte to be updated every frame. A value of n, where 2 n 15, of these four bits means that the same value of the RDI-P byte must be detected n times consecutively to declare a new value in the RDI-P byte register. Continuous N Times Detect C2 Byte. Control signal for detecting changes in state of the C2 byte. Valid values are 0 to 15. A value of 0 or 1 causes the data monitor byte to be updated every frame. A value of n, where 2 n 15, of these four bits means that the same value of the C2 byte must be detected n times consecutively to declare a new value in the C2 byte register. 204 Agere Systems Inc. Reset Default 0x3
0AAD, 0AB5, 15--12 0ABD, 0AC5
11--8
CNTDF2[A--D][3:0]
0x3
7--4
CNTDRDIP[A--D][3:0]
0x3
3--0
CNTDC2[A--D][3:0]
0x3
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
PT Registers (continued)
Table 104. Registers 0x0AC6--0x0AF7: PT Provisioning (R/W) Reset default of register 0x0AC6 = 0x0001. Reset default of registers 0x0AC7--0x0ACB = 0x0000. Address (Hex) 0AC6 Bit # 15--6 Name -- Function Reserved. These bits must be written to their reset default value (0000000000). Page Provisioning Port Number. Control bit that selects the port being provisioned. 00 = port A, 01 = port B, 10 = port C, and 11 = port D. Page Provisioning Time-Slot Number. Control bit that selects the time slot being provisioned. Legal values are 1 to 12, all illegal values default to time slot 1. Transmit RDI-P Data Insert. Software insert value. Transmit SS Value. Control values inserted into the SS bits in the H1 byte. Reserved. These bits must be written to their reset default value (000000000). Reserved. These bits must be written to their reset default value (00).* Reserved. These bits must be written to their reset default value (0x00). Receive C2 Expected Value. Expected value for the C2 byte. Transmit F2 Data Insert. Programmable F2 byte insert value. Transmit C2 Data Insert. Insert byte for the outgoing C2 bytes. Note: A value of zero causes an unequipped signal to be generated. Transmit Z3 Data Insert. Programmable Z3 byte insert value. Transmit H4 Data Insert. Programmable H4 byte insert value. Transmit Z5 Data Insert. Programmable Z5 byte insert value. Transmit Z4 Data Insert. Programmable Z4 byte insert value. Reset Default 00 0000 0000 00
5--4
PG_PROV_PNUM[1:0]
3--0
PG_PROV_TNUM[3:0]
0x1
0AC7
15--13 12--11 10--2
TRDIPDINS[2:0] TSS[1:0] --
000 00 0 0000 0000 00 0x00 0x00 0x00 0x00
1--0 0AC8 15--8 7--0 0AC9 15--8 7--0
-- -- RC2EXPVAL[7:0] TF2DINS[7:0] TC2DINS[7:0]
0ACA
15--8 7--0
TZ3DINS[7:0] TH4DINS[7:0] TZ5DINS[7:0] TZ4DINS[7:0]
0x00 0x00 0x00 0x00
0ACB
15--8 7--0
* SS pointer interpretation algorithm is not implemented.
Agere Systems Inc.
205
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
PT Registers (continued)
Table 105. Registers 0x0ACC--0x0AD1: PT Signal Fail BER Algorithm Parameters (R/W) Reset default of registers 0x0ACC--0x0AD1 = 0x0000. Address (Hex) 0ACC Bit # 15--8 Name PT_SFMSET[7:0] Function Signal Fail M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then RHSSD is cleared. Reserved. These bits must be written to their reset default value (0x0). Signal Fail L Set. Error threshold for determining if a monitoring block is bad. Signal Fail Ns Set. Number of frames in a monitoring block for RHSSD. Reserved. This bit must be written to its reset default value (0). Signal Fail B Set. Number of monitoring blocks. Signal Fail Ns Set. Number of frames in a monitoring block for RHSSD. Signal Fail M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then RHSSD is cleared. Reserved. These bits must be written to their reset default value (0x0). Signal Fail L Clear. Error threshold for determining if a monitoring block is bad. Signal Fail Ns Clear. Number of frames in a monitoring block for RHSSD. Reserved. This bit must be written to its reset default value (0). Signal Fail B Clear. Number of monitoring blocks. Signal Fail Ns Clear. Number of frames in a monitoring block for RHSSD. Reset Default 0x00
7--4 3--0 0ACD 15--13 12 11--0 0ACE 0ACF 15--0 15--8
-- PT_SFLSET[3:0] PT_SFNSSET[18:16] -- PT_SFBSET[11:0] PT_SFNSSET[15:0] PT_SFMCLEAR[7:0]
0x0 0x0 000 0 0x000 0x0000 0x00
7--4 3--0 0AD0 15--13 12 11--0 0AD1 15--0
-- PT_SFLCLEAR[3:0] PT_SFNSCLEAR[18:16] -- PT_SFBCLEAR[11:0] PT_SFNSCLEAR[15:0]
0x0 0x0 000 0 0x000 0x0000
206
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
PT Registers (continued)
Table 106. Registers 0x0AD2--0x0AD7: PT Signal Degrade BER Algorithm Parameters (R/W) Reset default of registers 0x0AD2--0x0AD7 = 0x0000. Address (Hex) 0AD2 Bit # 15--8 Name PT_SDMSET[7:0] Function Reset Default 0x00
0AD3
0AD4 0AD5
0AD6
0AD7
Signal Degrade M Set. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then RHSSD is cleared. 7--4 -- Reserved. These bits must be written to their reset default value (0x0). 3--0 PT_SDLSET[3:0] Signal Degrade L Set. Error threshold for determining if a monitoring block is bad. 15--13 PT_SDNSSET[18:16] Signal Degrade Ns Set. Number of frames in a monitoring block for RHSSD. 12 -- Reserved. This bit must be written to its reset default value (0). 11--0 PT_SDBSET[11:0] Signal Degrade B Set. Number of monitoring blocks. 15--0 PT_SDNSSET[15:0] Signal Degrade Ns Set. Number of frames in a monitoring block for RHSSD. 15--8 PT_SDMCLEAR[7:0] Signal Degrade M Clear. Threshold of the number of bad monitoring blocks in an observation interval. If the number of bad blocks is below this threshold, then RHSSD is cleared. 7--4 -- Reserved. These bits must be written to their reset default value (0x0). 3--0 PT_SDLCLEAR[3:0] Signal Degrade L Clear. Error threshold for determining if a monitoring block is bad. Signal Degrade Ns Clear. Number of frames in a 15--13 PT_SDNSCLEAR monitoring block for RHSSD. [18:16] 12 -- Reserved. This bit must be written to its reset default value (0). 11--0 PT_SDBCLEAR[11:0] Signal Degrade B Clear. Number of monitoring blocks. Signal Degrade Ns Clear. Number of frames in a 15--0 PT_SDNSCLEAR monitoring block for RHSSD. [15:0]
0x0 0x0 000 0 0x000 0x0000 0x00
0x0 0x0 000 0 0x000 0x0000
Agere Systems Inc.
207
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
PT Registers (continued)
Table 107 and Table 108 show values of Ns, L, M, and B for STS-3/STM-1, STS-12/STM-4, and STS-48/STM-16 to set and clear the BER indicator. SF registers are 0x0ACC--0x0AD1, and SD registers are 0x0AD2--0x0AD7. All SF/SD set and clear values are hexadecimal. Table 107. Ns, L, M, and B Values to Set the BER Indicator
Mode BER SF/SD Set Values Actual Number of Frames B* 3D 7 7 7 9 9 F -- -- A 8 8 8 8 8 -- -- 3F 3F E E E A -- 62 48 384 3840 47250 465000 4160000 -- 64 22 117 1152 11475 114750 1147500 -- 64 64 320 480 4710 46500 333300 -- Probability of Detecting L Errors (%) @BER 99.96 72.70 71.34 71.34 69.74 68.07 56.90 -- 100.00 84.92 67.93 66.19 65.75 65.75 65.75 -- 100.00 99.95 90.60 77.55 75.80 74.58 82.92 -- @BER/2 85.13 7.28 10.08 10.09 9.44 8.82 11.25 -- 88.43 9.64 7.17 6.66 6.53 6.53 6.53 -- 100.00 58.97 16.25 13.09 12.15 11.54 19.71 -- Probability of Declaring SF/SD (%) @BER 97.68 96.06 95.19 95.19 95.07 98.47 96.52 -- 100.00 98.38 96.48 95.46 95.16 95.16 95.16 -- 100.00 96.89 96.47 96.69 95.17 98.09 97.29 -- @BER/2 0.00 0.16 0.52 0.52 0.13 0.82 0.60 -- 0.04 0.00 0.25 0.19 0.18 0.18 0.18 -- 100.00 0.00 0.00 0.00 0.00 0.01 0.18 -- IntegraMaximum tion Time Number (s) of Frames 0.008 0.013 0.1 1 10 83 667 -- 0.008 0.008 0.025 0.25 2.5 21 167 -- 0.008 0.008 0.008 0.0625 0.625 5.2 42 -- 64 104 800 8000 80000 664000 5336000 -- 64 64 200 2000 20000 168000 1336000 -- 64 64 64 500 5000 41600 336000 --
Ns* STS-3/ STM-1 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-12/ STM-4 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-48/ STM-16 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 1 6 30 1E0 1275 B5A4 3F7A0 -- -- 2 D 80 4FB 31CE 1F20C -- -- 1 5 20 13A C1C 765C --
L* 6 9 7 7 7 7 4 -- -- B 8 8 8 8 8 -- -- E A 7 7 7 6 --
M* 3D 3 3 3 4 3 5 -- -- 6 3 3 3 3 3 -- -- 3F 35 8 8 7 6 --
* These are the numbers to be provisioned inTDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown. These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).
208
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
PT Registers (continued)
Table 108. Ns, L, M, and B Values to Clear the BER Indicator
Mode BER SF/SD Set Values Actual Number of Frames B* -- 7 7 7 7 9 9 F -- 6 A 8 8 8 8 8 -- E 3F 13 13 13 A -- 8 48 384 3840 47250 465000 4160000 -- 7 22 117 1152 11475 114750 1147500 -- 64 15 320 640 6280 62000 333300 Probability of Detecting L Errors (%) @BER*5 -- 85.13 93.01 84.42 84.42 83.66 82.86 46.31 -- 100.00 98.36 87.99 87.34 87.17 87.17 87.17 -- 100.00 100.00 95.07 87.34 86.52 85.95 84.89 @BER -- 0.39 11.33 6.84 6.84 6.59 6.35 1.48 -- 51.54 20.51 8.23 7.94 7.87 7.87 7.87 -- 45.99 60.11 7.28 7.94 7.61 7.38 7.00 Probability of Clearing SF/SD (%) @BER*5 -- 0.27 0.01 0.34 0.34 0.22 0.03 0.50 -- 0.00 0.07 0.02 0.02 0.03 0.03 0.03 -- 0.00 0.00 0.00 0.00 0.00 0.00 0.03 @BER -- 100.00 99.21 99.88 99.88 99.98 99.75 99.84 -- 99.03 100.00 99.59 99.64 99.65 99.65 99.65 -- 99.42 99.47 99.98 99.94 99.95 99.96 99.95 IntegraMaximum tion Time Number (s) of Frames -- 0.013 0.1 1 10 83 667 6670 -- 0.008 0.025 0.25 2.5 21 167 1670 -- 0.008 0.008 0.0625 0.625 5.2 42 420 -- 104 800 8000 80000 664000 5336000 53360000 -- 64 200 2000 20000 168000 1336000 13360000 -- 64 64 500 5000 41600 336000 3360000
Ns* STS-3/ STM-1 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-12/ STM-4 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 STS-48/ STM-16 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 -- 1 6 30 1E05 1275 B5A4 3F7A0 -- 1 2 D 80 4FB 31CE 1F20C -- 1 5 20 13A C1C 765C
L* -- 6 2 2 2 2 2 2 -- 7 2 2 2 2 2 2 -- 2 3 2 2 2 2
M* -- 3 3 3 3 4 3 2 -- 6 8 3 3 3 3 3 -- D D 6 6 6 4
* These are the numbers to be provisioned in TDAT042G5. The actual values of the BER algorithm are 1 greater than the actual value shown. s These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).
Agere Systems Inc.
209
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
PT Registers (continued)
Table 109. Registers 0x0AD8--0x0AF7: Transmit J1 Data Insert (R/W) Reset default of register = 0x0000. Address (Hex) 0AD8-- 0AF7 Bit # 15--0 Name TJ1DINS[1--64][7:0] Function Transmit J1 Data Insert. Insert values for the selected J1 bytes. Reset Default 0x0000
Table 110. Register 0x0AF8: Scratch Register (R/W) Reset default of register = 0x0000. Address (Hex) 0AF8 Bit # 15--0 Name PT_SCRATCH[15:0] Function Scratch Register. Diagnostic register used by the microprocessor. Has no effect on the macro operation. Reset Default 0x0000
210
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers
This section gives a brief description of each register bit and its functionality. All algorithms are described in the main text of the document. The abbreviations after each register indicate if the register is read only (RO), read/write (R/W), write only (WO), or clear-on-read or clear-on-write (COR/W). 0x indicates a hexadecimal value in the Reset Default column. Otherwise, the entry is binary. This is true for every register table in the document. Table 111. Register 0x1000: DE Macrocell Version Number (RO) Reset default of register = 0x0001.
Address (Hex) 1000 Bit # 15--0 Name DE_VERSION Function Macrocell Version Number. The version of the macrocell will increment each time a change occurs to the macrocell functionality. Reset Default 0x0001
Table 112. Register 0x1001, 0x1002: DE Interrupts (0x1001 is RO, 0x1002 is RO and COR/W) Reset default of registers = 0x0000. Note: Register 0x1001 is cleared by accessing the source register of the interrupt. The source register must be read and cleared to clear these registers.
Address (Hex) 1001 Bit # 15--5 Name -- Function Reserved. These bits must be written to their reset default value (00000000000). SDL Message Sent Interrupt. Note: This bit indicates that the SDL frame inserter is experiencing an interrupt. This bit will not clear on a read or a write of this register, but will clear when the SDL SDLMSI register (0x1606, bit 0) is read. These interrupts will generate a DE interrupt. 3--0 DEINTCH[3:0] Channel Interrupt. Active-high interrupt bit on a perchannel basis. These bits are the ORing of all interrupt bits associated with the error counters described in registers 0x1100--0x111F (pages 238--page 143). The error counter can be inhibited from contributing to the interrupt by setting the appropriate mask bit in register DEDINTM[0--3] (addresses 0x1180, 0x1182, 0x1184, 0x1186 on page 243). The following interrupts will generate a DE interrupt: Bit 0 corresponds to channel 0 interrupt. Bit 1 corresponds to channel 1 interrupt. Bit 2 corresponds to channel 2 interrupt. Bit 3 corresponds to channel 3 interrupt. Note: This bit indicates that the channel is experiencing an interrupt. This bit will not clear on a read or a write of this register, but will clear when the counter interrupt register DEDINTM[0--3] (addresses 0x1181, 0x1183, 0x1185, 0x1187 on page 244) is read or written. 0x0 Reset Default 000 0000 0000 0
4
DEINT_SDLMS
Agere Systems Inc.
211
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 112. Register 0x1001, 0x1002: DE Interrupts (0x1001 is RO, 0x1002 is RO and COR/W) (continued) Reset default of registers = 0x0000. Notes: Register 0x1002 must be used only in the COR mode, where core register 0x0010, bit 6 = 1. Bits 15--12, SDL Rx frame state interrupt (DEINT_SDLRxFS), are read only. Bits 15--12 are cleared by reading and clearing the corresponding interrupt source registers, 0x14E0--0x14E3. Address (Hex) 1002 Bit # 15--12 Name DEINT_SDLRxFS Function SDL Rx Frame State Interrupt. This interrupt is generated when the SDL frame state is transitioned from sync to hunt. This bit is cleared when read only. The following interrupts will generate a DE interrupt: Bit 12 corresponds to channel 0 interrupt. Bit 13 corresponds to channel 1 interrupt. Bit 14 corresponds to channel 2 interrupt. Bit 15 corresponds to channel 3 interrupt. 11--8 DEINT_ATMRxAC ATM Rx All-Cool Interrupt. This interrupt is generated when the payload of received null/ idle cells is correctly incrementing. This bit may clear when read or written. This interrupt is used in conjunction with the optional incrementing payload sequence mode for debug purposes and is used in conjunction with DE register 0x12F0. Bit 8 corresponds to channel 0 interrupt. Bit 9 corresponds to channel 1 interrupt. Bit 10 corresponds to channel 2 interrupt. Bit 11 corresponds to channel 3 interrupt. Note: This signal does not generate a DE interrupt under any circumstances. 0x0 Reset Default 0x0
212
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 112. Register 0x1001, 0x1002: DE Interrupts (0x1001 is RO, 0x1002 is RO and COR/W) (continued) Reset default of registers = 0x0000. Note: Register 0x1002 must be used only in the COR mode, where core register 0x0010, bit 6 = 1. Address (Hex) 1002 Bit # 7--4 Name DEINT_ATMRxF Function ATM Rx Frame State Interrupt. This interrupt is generated when the ATM frame state is transitioned from sync to hunt. This bit may clear when read or written. The following interrupts will generate a DE interrupt: Bit 0 corresponds to channel 0 interrupt. Bit 1 corresponds to channel 1 interrupt. Bit 2 corresponds to channel 2 interrupt. Bit 3 corresponds to channel 3 interrupt. 3--0 DEINT_ATMRxS ATM Rx X31Scrambler State Interrupt. This interrupt is generated when the ATM scrambler state is transitioned from synchronization to verification. This bit may clear when read or written. The following interrupts will generate a DE interrupt: Bit 4 corresponds to channel 0 interrupt. Bit 5 corresponds to channel 1 interrupt. Bit 6 corresponds to channel 2 interrupt. Bit 7 corresponds to channel 3 interrupt. Table 113. Register 0x1004: Dry Escape Marker (R/W) Reset default of register = 0x0020. Address (Hex) 1004 Bit # 15--8 7--0 Name -- DRYESCAPE[7:0] Function Reserved. These bits must be written to their reset default value (0x00). Dry Escape Value. This 8-bit value, attached with 0x7D, sets the dry marker value. The default dry marker value would then be 0x7D20. Reset Default 0x00 0x20 0x0 Reset Default 0x0
Agere Systems Inc.
213
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 114. Registers 0x1010--0x1015: Sequencer Provisioning Registers (R/W) (continued) Reset default of register 0x1010 = 0x0002. Reset default of register 0x1011 = 0x2210. Reset default of registers 0x1012, 0x1014 = 0x0435. Reset default of registers 0x1013, 0x1015 = 0x0025. Note: The settings of these registers must be consistent with core mode register (address 0x0010). Address (Hex) 1010 Bit # -- Name SEQ_CTRL Function Sequencer Control. Selects STS-3/STM-1, STS12/STM-4, or STS-48/STM-16 mode for the data engine. Allowed values are as follows: STS-3/STM-1 = 0x0001 STS-12/STM-4 = 0x0003 STS-48/STM-16 = 0x0002 Reserved. These bits must be written to their reset default value (00000000000000). Reset Default 0x0002
15--2
--
1
SEQ_RATE
0
SEQ_MODE
1011 1012
15--0 15--0
INIT_CNTS OH_MARKER_LO
1013
15--0
OH_MARKER_HI
1014
15--0
SOH_MARKER_LO
1015
15--0
SOH_MARKER_HI
Sequencer Rate. Configures internal clock derived from TxCKP/TxCKN. 0 = STS-3/STM-1 (internal clock = 19.440 MHz) 1 = STS-12/STM-4 or STS-48/STM-16 (internal clock = 77.760 MHz) Sequencer Mode. Used with bit 1 above to select the mode. 0 = STS-48/STM-16 1 = STS-3/STM-1 or STS-12/STM-4 Initial Counts. This register must be set to the default value (0x2210). OHP Marker Low. This register must be programmed as follows: STS-48/STM-16 = 0x0435 STS-12/STM-4 = 0x0435 STS-3/STM-1 = 0x010B OHP Marker High. This register must be programmed as follows: STS-48/STM-16 = 0x0025 STS-12/STM-4 = 0x0025 STS-3/STM-1 = 0x0007 Sequence Provisioning for OHP Marker Low. This register must be programmed as follows: STS-48/STM-16 = 0x0435 STS-12/STM-4 = 0x0435 STS-3/STM-1 = 0x010B Sequence Provisioning for OHP Marker High. This register must be programmed as follows: STS-48/STM-16 = 0x0025 STS-12/STM-4 = 0x0025 STS-3/STM-1 = 0x0007
00 0000 0000 0000 1
0
0x2210 0x0435
0x0025
0x0435
0x0025
214
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 115. Registers 0x1016--0x1021: Egress Configuration (R/W) Reset default of registers 0x1016, 0x101A, 0x101E = 0x4444. Reset default of registers 0x1017, 0x101B, 0x101F = 0x5555. Reset default of registers 0x1018, 0x101C, 0x1020 = 0x6666. Reset default of registers 0x1019, 0x101D, 0x1021 = 0x7777. Note: See Figures 17--20, pages 78--81. The notation X/Y means the following: X = STS-48/STM-16 byte, Y = STS-12/STM-4 or STS-3/STM-1 byte. Address (Hex) 1016--1021 Bit # 15--0 Name Tx_TS[1--12] Function Egress Time Slot [1--12]. These 12 registers define the egress time slots. The default is set to quad channel STS-48/STM-16. The payload bits may be set low to account for any unused slots. Possible configurations are as follows:
I
Reset Default See below.
Multichannel STS-48/STM-16. Each time slot will use only one channel, but the channel will vary for each time slot. Single-channel STS-48/STM-16. Each time slot will use only one channel for every time slot. STS-3/STM-1 or STS-12/STM-4. Each of four channels will be defined once for each time slot.
I
I
Agere Systems Inc.
215
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 115. Registers 0x1016--0x1021: Egress Configuration (R/W) (continued) Reset default of registers 0x1016, 0x101A, 0x101E = 0x4444. Reset default of registers 0x1017, 0x101B, 0x101F = 0x5555. Reset default of registers 0x1018, 0x101C, 0x1020 = 0x6666. Reset default of registers 0x1019, 0x101D, 0x1021 = 0x7777. Note: See Figures 17--20, pages 78--81. The notation X/Y means the following: X = STS-48/STM-16 byte, Y = STS-12/STM-4 or STS-3/STM-1 byte. Address (Hex) 1016 Bit # -- -- 15 14 Name Tx_TS1 -- -- Tx_PLD1 Function Egress Time Slot 1. Tx_TS1[15:12]: Byte 1/1A : Byte 1 transmit sequence map and channel. Reserved. This bit must be written to its reset default value (0). PLD. Defines the validity of the payload in the time slot. 1 = valid 0 = invalid CH. Defines one of four channels (00, 01, 10, 11). Tx_TS1[11:8]: Byte 4/1B: Byte 4 transmit sequence map and channel. Reserved. This bit must be written to its reset default value (0). PLD. Defines the validity of the payload in the time slot. 1 = valid 0 = invalid CH. Defines one of four channels (00, 01, 10, 11). Tx_TS1[7:4]: Byte 7/1C: Byte 7 transmit sequence map and channel. Reserved. This bit must be written to its reset default value (0). PLD. Defines the validity of the payload in the time slot. 1 = valid 0 = invalid CH. Defines one of four channels (00, 01, 10, 11). Tx_TS1[3:0]: Byte 10/1D: Byte 10 transmit sequence map and channel. Reserved. This bit must be written to its reset default value (0x4). PLD. Defines the validity of the payload in the time slot. 1 = valid 0 = invalid CH. Defines one of four channels (00, 01, 10, 11). Agere Systems Inc. Reset Default 0x444 0x4 0 1
13--12 -- 11 10
Tx_CH1 -- -- Tx_PLD4
00 0x4 0 1
9--8 -- 7 6
Tx_CH4 -- -- Tx_PLD7
00 0x4 0 1
5--4 -- 3 2
Tx_CH7 -- -- Tx_PLD10
00 0x4
1--0 216
Tx_CH10
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 115. Registers 0x1016--0x1021: Egress Configuration (R/W) (continued) Reset default of registers 0x1016, 0x101A, 0x101E = 0x4444. Reset default of registers 0x1017, 0x101B, 0x101F = 0x5555. Reset default of registers 0x1018, 0x101C, 0x1020 = 0x6666. Reset default of registers 0x1019, 0x101D, 0x1021 = 0x7777. Note: See Figures 17--20, pages 78--81. The notation X/Y means the following: X = STS-48/STM-16 byte, Y = STS-12/STM-4 or STS-3/STM-1 byte. Address (Hex) 1017 Bit # -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 Name Tx_TS2 -- -- -- -- Tx_TS3 -- -- -- -- Tx_TS4 -- -- -- -- Tx_TS5 -- -- -- -- Tx_TS6 -- -- -- -- Tx_TS7 -- -- -- -- Function Egress Time Slot 2. Refer to egress time slot 1. Byte 13/4A definition. Byte 16/4B definition. Byte 19/4C definition. Byte 22/4D definition. Egress Time Slot 3. Refer to egress time slot 1. Byte 25/7A definition. Byte 28/7B definition. Byte 31/7C definition. Byte 34/7D definition. Egress Time Slot 4. Refer to egress time slot 1. Byte 37/10A definition. Byte 40/10B definition. Byte 43/10C definition. Byte 46/10D definition. Egress Time Slot 5. Refer to egress time slot 1. Byte 2/2A definition. Byte 5/2B definition. Byte 8/2C definition. Byte 11/2D definition. Egress Time Slot 6. Refer to egress time slot 1. Byte 14/5A definition. Byte 17/5B definition. Byte 20/5C definition. Byte 23/5D definition. Egress Time Slot 7. Refer to egress time slot 1. Byte 26/8A definition. Byte 29/8B definition. Byte 32/8C definition. Byte 35/8D definition. Reset Default 0x5555
1018
0x6666
1019
0x7777
101A
0x4444
101B
0x5555
101C
0x6666
Agere Systems Inc.
217
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 115. Registers 0x1016--0x1021: Egress Configuration (R/W) (continued) Reset default of registers 0x1016, 0x101A, 0x101E = 0x4444. Reset default of registers 0x1017, 0x101B, 0x101F = 0x5555. Reset default of registers 0x1018, 0x101C, 0x1020 = 0x6666. Reset default of registers 0x1019, 0x101D, 0x1021 = 0x7777. Note: See Figures 17--20, pages 78--81. The notation X/Y means the following: X = STS-48/STM-16 byte, Y = STS-12/STM-4 or STS-3/STM-1 byte. Address (Hex) 101D Bit # -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 Name Tx_TS8 -- -- -- -- Tx_TS9 -- -- -- -- Tx_TS10 -- -- -- -- Tx_TS11 -- -- -- -- Tx_TS12 -- -- -- -- Function Egress Time Slot 8. Refer to egress time slot 1. Byte 38/11A definition. Byte 41/11B definition. Byte 44/11C definition. Byte 47/11D definition. Egress Time Slot 9. Refer to egress time slot 1. Byte 3/3A definition. Byte 6/3B definition. Byte 9/3C definition. Byte 12/3D definition. Egress Time Slot 10. Refer to egress time slot 1. Byte 15/6A definition. Byte 18/6B definition. Byte 21/6C definition. Byte 24/6D definition. Egress Time Slot 11. Refer to egress time slot 1. Byte 27/9A definition. Byte 30/9B definition. Byte 33/9C definition. Byte 36/9D definition. Egress Time Slot 12. Refer to egress time slot 1. Byte 39/12A definition. Byte 42/12B definition. Byte 45/12C definition. Byte 48/12D definition. Reset Default 0x7777
101E
0x4444
101F
0x5555
1020
0x6666
1021
0x7777
218
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 116. Registers 0x1022--0x102D: Ingress Configuration (R/W) Reset default of registers 0x1022, 0x1026, 0x102A = 0x4444. Reset default of registers 0x1023, 0x1027, 0x102B = 0x5555. Reset default of registers 0x1024, 0x1028, 0x102C = 0x6666. Reset default of registers 0x1025, 0x1029, 0x102D = 0x7777. Note: See Figures 17--20, pages 78--81. The notation X/Y means the following: X = STS-48/STM-16 byte, Y = STS-12/STM-4 or STS-3/STM-1 byte. Address (Hex) 1022--102D Bit # 15--0 Name Rx_TS[1--12] Function Ingress Time Slot [1--12]. These 12 registers define the ingress time slots. The default is set to quad channel STS-48/STM-16. The payload bits may be turned low to account for any unused slots. Possible configurations are as follows:
I
Reset Default See below.
Multichannel STS-48/STM-16. Each time slot will use only one channel, but the channel will vary for each time slot. Single-channel STS-48/STM-16. Each time slot will use only one channel for every time slot. STS-3/STM-1 or STS-12/STM-4. Each of four channels will be defined once for each time slot.
I
I
Agere Systems Inc.
219
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 116. Registers 0x1022--0x102D: Ingress Configuration (R/W) (continued) Reset default of registers 0x1022, 0x1026, 0x102A = 0x4444. Reset default of registers 0x1023, 0x1027, 0x102B = 0x5555. Reset default of registers 0x1024, 0x1028, 0x102C = 0x6666. Reset default of registers 0x1025, 0x1029, 0x102D = 0x7777. Note: See Figures 17--20, pages 78--81. The notation X/Y means the following: X = STS-48/STM-16 byte, Y = STS-12/STM-4 or STS-3/STM-1 byte. Address (Hex) 1022 Bit # -- -- 15 14 Name Rx_TS1 -- -- Rx_PLD1 Function Ingress Time Slot 1. Rx_TS1[15:12]. Byte 1/Byte 1A: Byte 1 receive sequence map and channel. Reserved. This bit must be written to its reset default value (0). PLD. Defines the validity of the payload in the time slot. 1 = valid 0 = invalid CH. Defines one of four channels (00, 01, 10, 11). Rx_TS1[11:8]. Byte 4/Byte 1B: Byte 4 receive sequence map and channel. Reserved. This bit must be written to its reset default value (0). PLD. Defines the validity of the payload in the time slot. 1 = valid 0 = invalid CH. Defines one of four channels (00, 01, 10, 11). Rx_TS1[7:4]. Byte 7/Byte 1C: Byte 7 receive sequence map and channel. Reserved. This bit must be written to its reset default value (0). PLD. Defines the validity of the payload in the time slot. 1 = valid 0 = invalid CH. Defines one of four channels (00, 01, 10, 11). Rx_TS1[3:0]. Byte 10/Byte 1D: Byte 10 receive sequence map and channel. Reserved. This bit must be written to its reset default value (0). PLD. Defines the validity of the payload in the time slot. 1 = valid 0 = invalid CH. Defines one of four channels(00, 01, 10, 11). Reset Default 0x4444 0x4 0 1
13--12 -- 11 10
Rx_CH1 -- -- Rx_PLD4
00 0x4 0 1
9--8 -- 7 6
Rx_CH4 -- -- Rx_PLD7
00 0x4 0 1
5--4 -- 3 2
Rx_CH7 -- -- Rx_PLD10
00 0x4 0 1
1--0 220
Rx_CH10
00
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 116. Registers 0x1022--0x102D: Ingress Configuration (R/W) (continued) Reset default of registers 0x1022, 0x1026, 0x102A = 0x4444. Reset default of registers 0x1023, 0x1027, 0x102B = 0x5555. Reset default of registers 0x1024, 0x1028, 0x102C = 0x6666. Reset default of registers 0x1025, 0x1029, 0x102D = 0x7777. Note: See Figures 17--20, pages 78--81. The notation X/Y means the following: X = STS-48/STM-16 byte, Y = STS-12/STM-4 or STS-3/STM-1 byte. Address (Hex) 1023 Bit # -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 Name Rx_TS2 -- -- -- -- Rx_TS3 -- -- -- -- Rx_TS4 -- -- -- -- Rx_TS5 -- -- -- -- Rx_TS6 -- -- -- -- Rx_TS7 -- -- -- -- Function Ingress Time Slot 2. Refer to ingress time slot 1. Byte 13/4A definition. Byte 16/4B definition. Byte 19/4C definition. Byte 22/4D definition. Ingress Time Slot 3. Refer to ingress time slot 1. Byte 25/7A definition. Byte 28/7B definition. Byte 31/7C definition. Byte 34/7D definition. Ingress Time Slot 4. Refer to ingress time slot 1. Byte 37/10A definition. Byte 40/10B definition. Byte 43/10C definition. Byte 46/10D definition. Ingress Time Slot 5. Refer to ingress time slot 1. Byte 2/2A definition. Byte 5/2B definition. Byte 8/2C definition. Byte 11/2D definition. Ingress Time Slot 6. Refer to ingress time slot 1. Byte 14/5A definition. Byte 17/5B definition. Byte 20/5C definition. Byte 23/5D definition. Ingress Time Slot 7. Refer to ingress time slot 1. Byte 26/8A definition. Byte 29/8B definition. Byte 32/8C definition. Byte 35/8D definition. Reset Default 0x5555
1024
0x6666
1025
0x7777
1026
0x4444
1027
0x5555
1028
0x6666
Agere Systems Inc.
221
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 116. Registers 0x1022--0x102D: Ingress Configuration (R/W) (continued) Reset default of registers 0x1022, 0x1026, 0x102A = 0x4444. Reset default of registers 0x1023, 0x1027, 0x102B = 0x5555. Reset default of registers 0x1024, 0x1028, 0x102C = 0x6666. Reset default of registers 0x1025, 0x1029, 0x102D = 0x7777. Note:See Figures 17--20, pages 78--81. The notation X/Y means the following: X = STS-48/STM-16 byte, Y = STS-12/STM-4 or STS-3/STM-1 byte. Address (Hex) 1029 Bit # -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 -- 15--12 11--8 7--4 3--0 Name Rx_TS8 -- -- -- -- Rx_TS9 -- -- -- -- Rx_TS10 -- -- -- -- Rx_TS11 -- -- -- -- Rx_TS12 -- -- -- -- Function Ingress Time Slot 8. Refer to ingress time slot 1. Byte 38/11A definition. Byte 41/11B definition. Byte 44/11C definition. Byte 47/11D definition. Ingress Time Slot 9. Refer to ingress time slot 1. Byte 3/3A definition. Byte 6/3B definition. Byte 9/3C definition. Byte 12/3D definition. Ingress Time Slot 10. Refer to ingress time slot 1. Byte 15/6A definition. Byte 18/6B definition. Byte 21/6C definition. Byte 24/6D definition. Ingress Time Slot 11. Refer to ingress time slot 1. Byte 27/9A definition. Byte 30/9B definition. Byte 33/9C definition. Byte 36/9D definition. Ingress Time Slot 12. Refer to ingress time slot 1. Byte 39/12A definition. Byte 42/12B definition. Byte 45/12C definition. Byte 48/12D definition. Reset Default 0x7777
102A
0x4444
102B
0x5555
102C
0x6666
102D
0x7777
222
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 117. Registers 0x102E--0x1031: Over-Fiber Mode (Packet-Over-Fiber or POF) Control (R/W) Reset default of registers = 0x0000. Address (Hex) 102E Bit # -- Name Rx_OF_CTRL Function Ingress Over-Fiber Mode Register. This register will define the channels, if any, that are carrying over-fiber payload in the ingress direction. 0 = SONET 1 = over-fiber mode (For specific bits, see register Rx_TS[1--12], page 219.) Reserved. These bits must be written to their reset default value (0). Physical channel (line) A mode. Reserved. These bits must be written to their reset default value (00). Physical channel (line) B mode. Reserved. These bits must be written to their reset default value (000). Physical channel (line) C mode. Reserved. These bits must be written to their reset default value (000). Physical channel (line) D mode. Reserved. These bits must be written to their reset default value (00). Egress Over-Fiber Mode Register. This register will define the channels, if any, that are carrying over-fiber payload in the egress direction. 0 = SONET 1 = over-fiber mode (For specific bits, see register Tx_TS[1--12], page 215.) Reserved. These bits must be written to their reset default value (0). Physical channel (line) A mode. Reserved. These bits must be written to their reset default value (00). Physical channel (line) B mode. Reserved. These bits must be written to their reset default value (000). Physical channel (line) C mode. Reserved. These bits must be written to their reset default value (000). Physical channel (line) D mode. Reserved. These bits must be written to their reset default value (00). 223 Reset Default 0x0000
15 14 13--12 10 9--7 6 5--3 2 1--0 102F --
--
--
--
--
--
--
--
--
--
Tx_OF_CTRL
0x0000
15 14 13--12 10 9--7 6 5--3 2 1--0 Agere Systems Inc.
--
--
--
--
--
--
--
--
--
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 117. Registers 0x102E--0x1031: Over-Fiber Mode (Packet-Over-Fiber or POF) Control (R/W) (continued) Reset default of registers = 0x0000. Address (Hex) 1030 Bit # -- Name Rx_CHCD_FM[15:0] Function Receive Channel C/D Framer Mode. This register is used in over-fiber mode to give the Rx sequencer prior knowledge of the time slot and byte location within a time slot of the valid byte of a transparent packet for a given frame. Reserved. These bits must be written to their reset default value (00). Time slot having the last payload for channel C. Last byte location out of 4-byte output for channel C. Reserved. These bits must be written to their reset default value (00). Time slot having the last payload for channel D. Last byte location out of 4-byte output for channel D. Receive Channel A/B Framer Mode. This register is used in over-fiber mode to give the Rx sequencer prior knowledge of the time slot and byte location within a time slot of the valid byte of a transparent packet for a given frame. Reserved. These bits must be written to their reset default value (00). Time slot having the last payload for channel A. Last byte location out of 4-byte output for channel A. Reserved. These bits must be written to their reset default value (00). Time slot having the last payload for channel B. Last byte location out of 4-byte output for channel B. Reset Default 0x0000
15--14 13--10 9--8 7--6 5--2 1--0 1031 --
-- -- -- -- -- -- Rx_CHAB_FM[15:0]
0x0000
15--14 13--10 9--8 7--6 5--2 1--0
-- -- -- -- -- --
224
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 118. Registers 0x1032--0x1036: Sequencer Cell State Registers (R/W) Reset default of registers 0x1032--0x1035 = 0x0000. Reset default of register 0x1036 = 0x000F. Address (Hex) 1032--1035 Bit # -- Name Rx_CELL[A--D]_FM Function Rx Channel [A--D] Cell Register. This register is used in over-fiber mode to give the Rx sequencer prior knowledge of the cell in which the last byte of a transparent packet for a given frame is located. Reserved. These bits must be written to their reset default value (000000). Rx Last Byte of Current Frame. Defines which of the 810 SONET cells has the last byte of the current frame in channel [A--D]. Tx Sequencer Disable. This register is used to enable or disable channels. The default is all four channels are disabled. In other words, the disables on the channels must be cleared or the sequencer will not operate. 1 = the channel is disabled; 0 = the channel is enabled. Reserved. These bits must be written to their reset default value (0x000). Channel A Disable. Channel B Disable. Channel C Disable. Channel D Disable. Reset Default 0x0000
15--10 9--0
-- RxLBCF
1036
--
Tx_SEQ_DISABLE
00 0000 00 0000 0000 0x000F
15--4 3 2 1 0
-- -- -- -- --
0x000 1 1 1 1
Table 119. Registers 0x1040--0x1043: Ingress Payload Type and Mode Control (R/W) Reset default of registers = 0x0700. Address (Hex) 1040--1043 Bit # -- Name Rx_PCTL_[0--3] Function Channel [0--3] Payload Type and Control. See Table 120 for receive type and mode control summary. Reserved. These bits must be written to their reset default value (00000). Payload Type. Defines the payload type being received. Payload Control. Allows for different options when receiving data, such as pre- or postunscrambling, PPP header discard, etc. Reset Default 0x0700
15--11 10--8 7--0
-- -- --
00000 111 0x00
Agere Systems Inc.
225
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 120. Receive Type and Mode Control Summary Table (Registers 0x1040--0x1043)
Payload Type, Bits [10:8] 000 PPP Payload Control, Bits [7:0] 7 0 = discard 1 = no discard 6 0 = header stripped 1 = header on 001 HDLC with CRC 0 0 0 = CRC-16 1 = CRC-32 5 0 = CRC-16 1 = CRC-32 4 0 = CRC stripped 1 = CRC on 3 0 = CRC reversed 1 = CRC normal 2 0 = no dry mode 1 = dry mode 1 0
00 = no unscrambling 01 = post-unscrambling 10 = pre-unscrambling 11 = undefined
0 = CRC stripped 1 = CRC on
0 = CRC reversed 1 = CRC normal
0 = no dry mode 1 = dry mode
00 = no unscrambling 01 = post-unscrambling 10 = pre-unscrambling 11 = undefined
010 HDLC without CRC
0
0
0
0
0
0 = no dry mode 1 = dry mode
00 = no unscrambling 01 = post-unscrambling 10 = pre-unscrambling 11 = undefined
011 ATM
0 = byte sync 1 = bit sync
0
00 = X43 unscrambling 01 = no unscrambling 10 = X31 unscrambling 11 = no unscrambling
0 = unassigned cell discard
0 = idle cell discard 1 = idle cell passthrough
00 = no discard* 01 = discard 10 = smart discard 11 = discard, no correction
1 = unassigned cell passthrough
100 SDL without CRC
0 = byte sync 1 = bit sync
0 = length stripped
0
0
Length offset (0x0 to 0xF)
1 = length on
101 SDL with CRC 110 Transparent payload 111 Not defined (reset mode)
0 = byte sync 1 = bit sync 0
0 = length stripped 1 = length on 0
0 = CRC-16 1 = CRC-32 0
0 = CRC stripped 1 = CRC on 0
Length offset (0x0 to 0xF)
0
0
0
0
0
0
0
0
0
0
0
0
* No discard--Pass allATM cells with no error correction. Discard--Discard cells with multiple-bit header errors. Correct and pass all cells with single-bit header errors. Smart discard--Discard cells with multiple-bit header errors, and only correct and pass the first of back-to-back single-bit header errors. Discard, no correction--Discard all cells with header errors.
226
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 121. Registers 0x1080--0x1087: ATM Framer Idle Cell Match Mask (R/W) Reset default of registers = 0xFFFF. Address (Hex) 1080--1087 Bit # -- Name ATM_IDM_[0--3][31:0] Function ATM Idle Cell Match Mask Channel [0--3]. This 32-bit register defines which of the 32 bits will be used for comparison between the idle cell register and the header data in the ATM framer. A value of 1 enables the comparison with the corresponding bit in the ATM idle cell register. [31:24] is the MSByte of ATM_IDM_0. [7:0] is the LSByte ofATM_IDM_0. [31:24] is the MSByte of ATM_IDM_1. [7:0] is the LSByte ofATM_IDM_1. [31:24] is the MSByte of ATM_IDM_2. [7:0] is the LSByte ofATM_IDM_2. [31:24] is the MSByte of ATM_IDM_3. [7:0] is the LSByte ofATM_IDM_3. Reset Default 0xFFFF
1080 1081 1082 1083 1084 1085 1086 1087
15--0 15--0 15--0 15--0 15--0 15--0 15--0 15--0
ATM_IDM_0[31:16] ATM_IDM_0[15:0] ATM_IDM_1[31:16] ATM_IDM_1[15:0] ATM_IDM_2[31:16] ATM_IDM_2[15:0] ATM_IDM_3[31:16] ATM_IDM_3[15:0]
0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF
Table 122. Registers 0x1088--0x108F: ATM Idle Cell Registers (R/W) Reset default of registers 0x1088, 0x108A, 0x108C, 0x108E = 0x0000. Reset default of registers 0x1089, 0x108B, 0x108D, 0x108F = 0x0001. Address (Hex) 1088--108F Bit # -- Name ATM_IDC_[0--3][31:0] Function ATM Idle Cell Register Channel [0--3]. This 32-bit register will store the expected header value for idle cells. If the ATM framer sees a header for an ATM packet which matches this register at the bit positions designated by the ATM idle cell match mask, the packet will be treated as an idle cell. [31:24] is the MSByte of ATM_IDC_0. [7:0] is the LSByte ofATM_IDC_0. [31:24] is the MSByte of ATM_IDC_1. [7:0] is the LSByte ofATM_IDC_1. [31:24] is the MSByte of ATM_IDC_2. [7:0] is the LSByte ofATM_IDC_2. [31:24] is the MSByte of ATM_IDC_3. [7:0] is the LSByte ofATM_IDC_3. Reset Default See below.
1088 1089 108A 108B 108C 108D 108E 108F
15--0 15--0 15--0 15--0 15--0 15--0 15--0 15--0
ATM_IDC_0[31:16] ATM_IDC_0[15:0] ATM_IDC_1[31:16] ATM_IDC_1[15:0] ATM_IDC_2[31:16] ATM_IDC_2[15:0] ATM_IDC_3[31:16] ATM_IDC_3[15:0]
0x0000 0x0001 0x0000 0x0001 0x0000 0x0001 0x0000 0x0001
Agere Systems Inc.
227
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 123. Registers 0x1090--0x1097: ATM Unassigned Cell Match Mask (R/W) Reset default of registers = 0xFFFF. Address (Hex) 1090--1097 Bit # -- Name Function Reset Default 0xFFFF
1090 1091 1092 1093 1094 1095 1096 1097
15--0 15--0 15--0 15--0 15--0 15--0 15--0 15--0
ATM_USM_[0--3][31:0] ATM Unassigned Cell Match Mask Channel [0--3]. This 32-bit register defines which of the 32 bits will be used for comparison between the unassigned cell register and the header data in theATM framer. A value of 1 enables the comparison with the corresponding bit in the ATM unassigned cell register. ATM_USM_0[31:16] [31:24] is the MSByte ofATM_USM_0. ATM_USM_0[15:0] [7:0] is the LSByte of ATM_USM_0. ATM_USM_1[31:16] [31:24] is the MSByte ofATM_USM_1. ATM_USM_1[15:0] [7:0] is the LSByte of ATM_USM_1. ATM_USM_2[31:16] [31:24] is the MSByte ofATM_USM_2. ATM_USM_2[15:0] [7:0] is the LSByte of ATM_USM_2. ATM_USM_3[31:16] [31:24] is the MSByte ofATM_USM_3. ATM_USM_3[15:0] [7:0] is the LSByte of ATM_USM_3.
0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF
Table 124. Registers 0x1098--0x109F: ATM Unassigned Cell Registers (R/W) Reset default of registers = 0x0000. Address (Hex) 1098--109F Bit # -- Name ATM_USG_[0--3][31:0] Function ATM Unassigned Cell Register Channel 0. This 32-bit register will store the expected header value for unassigned cells. If the ATM framer sees a header for an ATM packet which matches this register at the bit positions designated by the ATM unassigned cell match mask, the packet will be treated as an unassigned cell. [31:24] is the MSByte ofATM_USG_0. [7:0] is the LSByte of ATM_USG_0. [31:24] is the MSByte ofATM_USG_1. [7:0] is the LSByte of ATM_USG_1. [31:24] is the MSByte ofATM_USG_2. [7:0] is the LSByte of ATM_USG_2. [31:24] is the MSByte ofATM_USG_3. [7:0] is the LSByte of ATM_USG_3. Reset Default 0x0000
1098 1099 109A 109B 109C 109D 109E 109F
15--0 15--0 15--0 15--0 15--0 15--0 15--0 15--0
ATM_USG_0[31:16] ATM_USG_0[15:0] ATM_USG_1[31:16] ATM_USG_1[15:0] ATM_USG_2[31:16] ATM_USG_2[15:0] ATM_USG_3[31:16] ATM_USG_3[15:0]
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000
228
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 125. Registers 0x10A0--0x10A3: ATM Framer State Registers (RO) Reset default of registers = 0x0000. Address (Hex) 10A0--10A3 Bit # -- 15--4 3--2 Name ATM_ST_[0--3] -- -- Function Channel [0--3] ATM Scrambler Framer State. Reserved. These bits must be written to their reset default value (0x000). ATM Framer Sync State. These bits indicate the X31 sync state of each channel. ATM_ST_[0--3][3:2] = 00 Acquisition ATM_ST_[0--3][3:2] = 01 Verification ATM_ST_[0--3][3:2] = 10 Synchronized ATM_ST_[0--3][3:2] = 11 Undefined ATM Frame State. These bits indicate the frame state of each channel. ATM_ST_[0--3][1:0] = 00 Hunt ATM_ST_[0--3][1:0] = 01 Presync ATM_ST_[0--3][1:0] = 10 Sync ATM_ST_[0--3][1:0] = 11 Undefined Table 126. Register 0x10A4: ATM X43 Frame Control (R/W) Reset default of register = 0x01C6. Address (Hex) 10A4 Bit # -- 15--12 11--6 Name ATM_X43[11:0] -- -- Function ATM X43 Frame Control. Reserved. These bits must be written to their reset default value (0x0). X43-Alpha. This register will define the alpha value for the X43 alpha-delta framer which is the number of consecutive incorrect ATM cells that must be received in order to transition from the sync state to the hunt state. X43-Delta. This register will define the delta value for the X43 alpha-delta framer which is the number of consecutive correct ATM cells that must be received in order to transition from the presync state to the sync state. Reset Default 0x01C6 0x0 000111 Reset Default 0x0000 0x000 00
1--0
--
00
5--0
--
000110
Agere Systems Inc.
229
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 127. Register 0x10A5: ATM X31 Frame Control (R/W) Reset default of register = 0x01C8. Address (Hex) 10A5 Bit # -- 15--12 11--6 Name ATM_X31[11:0] -- -- Function ATM X31 Framer Control. Reserved. These bits must be written to their reset default value (0x0). X31-Alpha. This register will define the alpha value for the X31 alpha-delta framer which is the number of consecutive incorrectATM cells that must be received in order to transition from the sync state to the hunt state. X31-Delta. This register will define the delta value for the X31 alpha-delta framer which is the number of consecutive correctATM cells that must be received in order to transition from the presync state to the sync state. Reset Default 0x01C8 0x0 000111
5--0
--
001000
Table 128. Register 0x10A6: ATM X31 V/W Values (R/W) Reset default of register = 0x0210. Address (Hex) 10A6 Bit # -- 15--12 11--6 Name ATM_X31VW[11:0] -- -- Function X31 V and W Values. Reserved. These bits must be written to their reset default value (0x0). X31 V Value. This register specifies the value the confidence counter in the X31 scrambler synchronization process must drop below in order to transition to the acquisition state from the verification state. The confidence counter is incremented every time the local scrambler samples match the received samples, and decremented when they do not (see standard I.432). X31 W Value. This register specifies the value the confidence counter in the X31 scrambler synchronization process must drop below in order to declare loss of synchronization and transition to the acquisition state. The confidence counter is incremented every time the local scrambler samples match the received samples, and decremented when they do not (see standard I.432). Reset Default 0x0210 0x0 001000
5--0
--
010000
230
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 129. Register 0x10A7: ATM X31 X/Y Values (R/W) Reset default of register = 0x0418. Address (Hex) 10A7 Bit # -- 15--12 11--6 Name ATM_X31XY[11:0] -- -- Function X31 X and Y Values. Reserved. These bits must be written to their reset default value (0x0). X31 X Value. This register specifies the minimum value the confidence counter in the X31 scrambler synchronization process must reach in order to transition to the verification state from the acquisition state. The confidence counter is incremented every time the local scrambler samples match the received samples, and decremented when they do not (see standard I.432). X31 Y Value. This register specifies the minimum value the confidence counter in the X31 scrambler synchronization process must reach in order to transition to the synchronized state from the verification state. The confidence counter is incremented every time the local scrambler samples match the received samples, and decremented when they do not (see standard I.432). Reset Default 0x0418 0x0 010000
5--0
--
011000
Table 130. Register 0x10A8: ATM X31 Z Value (R/W) Reset default of register = 0x0018. Address (Hex) 10A8 Bit # -- 15--6 Name ATM_X31Z[5:0] -- Function X31 Z Value. Reserved. These bits must be written to their reset default value (0000000000). X31 Z Value. This register specifies the maximum value the confidence counter in the X31 scrambler synchronization process can achieve. The confidence counter is incremented every time the local scrambler samples match the received samples, and decremented when they do not (see standard I.432). Reset Default 0x0018 00 0000 0000 011000
5--0
--
Agere Systems Inc.
231
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 131. Register 0x10A9: Frame State Interrupt Mask (R/W) Reset default of register = 0x000F. Address (Hex) 10A9 Bit # -- Name FS_INT_MASK[3:0] Function Frame State Interrupt Mask. When active (logic 1), the associated event/delta is inhibited from contributing to the interrupt on a perchannel basis. Otherwise, an interrupt is generated when the ATM frame state transitions from sync to hunt state. Reserved. These bits must be written to their reset default value (0x000). Channel 3 Mask Value. Channel 2 Mask Value. Channel 1 Mask Value. Channel 0 Mask Value. Reset Default 0x000F
15--4 3 2 1 0
-- -- -- -- --
0x000 1 1 1 1
Table 132. Register 0x10AA: Scrambler State Interrupt Mask (R/W) Reset default of register = 0x000F. Address (Hex) 10AA Bit # -- Name SS_INT_MASK[3:0] Function Scrambler State Interrupt Mask. When active (logic 1), the associated event/delta is inhibited from contributing to the interrupt on a perchannel basis. Otherwise, an interrupt is generated when the ATM frame state transitions from synchronization to verification state. Reserved. These bits must be written to their reset default value (0x000). Channel 3 Mask Value. Channel 2 Mask Value. Channel 1 Mask Value. Channel 0 Mask Value. Reset Default 0x000F
15--4 3 2 1 0
-- -- -- -- --
0x000 1 1 1 1
232
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 133. Register 0x10AB: ATM Receive Debug Register (R/W) Reset default of register = 0x003C. Address (Hex) 10AB Bit # -- 15--6 Name Function Reset Default 0x003C 00 0000 0000 1
ATM_Rx_DEBUG_REG[5:0] ATM Receive Debug Register.
--
Reserved. These bits must be written to their reset default value (0000000000). Channel 3 All Cool-Interrupt Mask Value. When active (logic 1), the associated event/ delta is inhibited from contributing to the interrupt on a per-channel basis. Channel 2 All-Cool Interrupt Mask Value. When active (logic 1), the associated event/ delta is inhibited from contributing to the interrupt on a per-channel basis. Channel 1 All-Cool Interrupt Mask Value. When active (logic 1), the associated event/ delta is inhibited from contributing to the interrupt on a per-channel basis. Channel 0 All-Cool Interrupt Mask Value. When active (logic 1), the associated event/ delta is inhibited from contributing to the interrupt on a per-channel basis. Incrementing NULL Cell Payload Sequence. This bit governs whether 0x6A is used for the payload of NULL cells, or whether an incrementing 8-bit count is used (0x00 0xFF). A value of 1 selects the incrementing sequence. This can be used with the All_Cool interrupt. X31_Sync_Compare. In X31 mode, when this value is 0, the ATM framer does 6-bit comparisons of the HEC, which does not allow for error correction. When this value is 1, all 8 bits of the HEC are used, which does allow for error correction.
5
--
4
--
1
3
--
1
2
--
1
1
--
0
0
--
0
Agere Systems Inc.
233
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 134. Registers 0x10B0--0x10B3: PPP Attach (R/W) Reset default of registers = 0x0000. Address (Hex) Bit # Name PPP_Tx_CHAN[0--3] Function Channel [0--3] PPP Header. This register defines the 2 bytes that will be generated as the PPP header in compressed header PPP mode. In uncompressed header PPP mode, they will serve as the third and fourth bytes of the 4-byte header, with 0xFF03 being the first and second bytes. Reset Default 0x0000
10B0--10B3 15--0
Table 135. Registers 0x10E0--0x10E3: Egress Payload Type and Mode Control (R/W) Reset default of registers = 0x0700. Address (Hex) 10E0--10E3 Bit # -- Name Tx_PCTL_[0--3][10:0] Function Channel [0--3] Payload Type and Control. See Table 136 for transmit type and mode control summary. Reserved. These bits must be written to their reset default value (00000). Payload Type. Defines the payload type being received. Payload Control. Allows for different options when transmitting data, such as pre- or postscrambling, dry mode, PPP header discard, etc. Reset Default 0x0700
15--11 10--8 7--0
-- -- --
00000 111 0x00
234
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 136. Transmit Type and Mode Control Summary Table (Registers 0x10E0--0x10E3) Note: In the table below, X indicates the bit may either be 0 or 1. Payload Type, Bits [10:8]
000 PPP
Payload Control, Bits [7:0] 7
0 = compression 1 = no compression 0
6
5
0 = CRC-16 1 = CRC-32 0
4
3
0 = CRC reversed 1 = CRC normal
2
0 = no dry mode 1 = dry mode
1
0
00 = no scrambling 01 = postscrambling 10 = pre-scrambling 11 = undefined 00 = no scrambling 01 = postscrambling 10 = prescrambling 11 = undefined 00 = no scrambling 01 = postscrambling 10 = prescrambling 11 = undefined 0 0
001 HDLC with CRC
0
0
0 = CRC-16 1 = CRC-32
0
0 = CRC reversed 1 = CRC normal
0 = no dry mode 1 = dry mode
010 HDLC without CRC
0
0
0
0
0
0 = no dry mode 1 = dry mode
011 ATM
0
0
00 = X43 scrambling 01 = no scrambling 10 = X31 scrambling 11 = no scrambling X X 0 = CRC-16 1 = CRC-32 0 0 0
0
0
100 X SDL without CRC 101 0 SDL with CRC 110 Transparent payload 111 Not defined (reset mode) 0
X 0 0
X 0 0
X 0 0
X 0 0
X 0 0
0
0
0
0
0
0
0
0
Table 137. Registers 0x10F0--10FB: PPP Header Value Detach (R/W) Reset default of registers = 0x0000. Address (Hex) 10F0--10FB Bit # 15--0 Name PPP_Rx_HDR [0--11][15:0] Function Register [0--11] PPP Header. This register defines the 2 bytes that can be used by all four channels to validate a PPP packet. Byte [15:8] is the MSByte and byte [7:0] is the LSByte. The register defining the valid PPP header is determined by the settings of registers 0x0FC--0x0FF. Any channel can compare the received PPP header to this value. If there is a mismatch, then the PPP mismatched header counter (addresses 0x1118--0x111F) will increment. Reset Default 0x0000
Agere Systems Inc.
235
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 138. Registers 0x10FC--0x10FF: PPP Header Detach Search (R/W) Reset default of register 10FC = 0xC001. Reset default of register 10FD = 0xC002. Reset default of register 10FE = 0xC004. Reset default of register 10FF = 0xC008. Address (Hex) 10FC--10FF Bit # -- Name PPP_Rx_CHK_CH [0--3][15:0] Function Channel [0--3] PPP Header Search. This register will control the headers that channel [0--3] PPP detach block looks for. Mismatched headers will be noted in a separate counter (addresses 0x1118-- 0x111F). Controls the way the PPP headers are searched for and passed through. 00 = Pass any 32-bit header where the first 16 bits are 0xFF03. The 0xFF03 (2 bytes) is stripped, and the protocol field remains. 01 = Pass only specified uncompressed patterns (first 16 bits are 0xFF03; last 16 bits are defined by fixed patterns and/or register values). A 32-bit match is performed, and the 32 bits are all stripped. See below. 10 = Pass only specified compressed pattern (all 16 bits are defined by fixed patterns and/or register values). A search is made for one of the provisioned headers, and those 16 bits are stripped. See below. 11 = Pass any pattern defined by fixed patterns and/ or registers values. See below. A value of 1 in this bit will enable a search for the 16-bit fixed value 0x8021. A value of 1 in this bit will enable a search for the 16-bit fixed value 0x0021. A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10FB. A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10FA. A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10F9. A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10F8. A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10F7. A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10F6. A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10F5. A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10F4. Reset Default See below.
15--14
--
11
13 12 11 10 9 8 7 6 5 4 236
-- -- -- -- -- -- -- -- -- --
0 0 0 0 0 0 0 0 0 0
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 138. Registers 0x10FC--0x10FF: PPP Header Detach Search (R/W) (continued) Reset default of register 10FC = 0xC001. Reset default of register 10FD = 0xC002. Reset default of register 10FE = 0xC004. Reset default of register 10FF = 0xC008. Address (Hex) 10FC 10FD 10FE 10FF 10FC 10FD 10FE 10FF 10FC 10FD 10FE 10FF 10FC 10FD 10FE 10FF Bit # 3 Name -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Function A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10F3. Reset Default 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
2
A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10F2.
1
A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10F1.
0
A value of 1 in this bit will enable a search of the 16-bit value in register address 0x10F0.
Agere Systems Inc.
237
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 139. Registers 0x1100--0x1107: ATM/HDLC/SDL Framer--Condition Counter 1 (PMRST Update) (RO) Reset default of registers = 0x0000. Address (Hex) 1100--1107 Bit # -- Name PM_FC1_[0--3][27:0] Function ATM/HDLC/SDL Counter 1 Channel [0--3]. Keeps a count of conditions detected by the data framer in the particular channel. This register can represent only one of the following based upon the channel's payload type: I HDLC invalid sequences (as defined in IETF RFC 1622 below)
I I
Reset Default 0x0000
ATM corrected cells SDL corrected header
1100
15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0
-- PM_FC1_0[27:16] PM_FC1_0[15:0] -- PM_FC1_1[27:16] PM_FC1_1[15:0] -- PM_FC1_2[27:16] PM_FC1_2[15:0] -- PM_FC1_3[27:16] PM_FC1_3[15:0]
1101 1102
1103 1104
1105 1106
1107
This value is updated upon assertion of PMRST, and the real-time counter value is reset to zero. From IETF RFC 1622, invalid sequences are the following: 1. Frames which are too short (less than 4 data bytes). See register PM_FC2_0 (addresses 0x1108--0x110F). 2. Frames which end with a control escape octet followed immediately by a coding flag sequence (0x7D7E). 3. Frames in which octet framing is violated by transmitting a 0 stop bit where a 1 bit is expected. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_FC1_0. [7:0] is the LSByte of PM_FC1_0. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte PM_FC1_1. [7:0] is the LSByte of PM_FC1_1. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_FC1_2. [7:0] is the LSByte of PM_FC1_2. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_FC1_3. [7:0] is the LSByte of PM_FC1_3.
0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000
238
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 140. Registers 0x1108--0x110F: ATM/HDLC/SDL Framer--Condition Counter 2 (PMRST Update) (RO) Reset default of registers = 0x0000. Address (Hex) 1108--110F Bit # -- Name PM_FC2_[0--3][27:0] Function ATM/HDLC/SDL Counter 2 Channel [0--3]. Keeps a count of conditions detected by the data framer in the particular channel. This register can represent only one of the following based upon the channel's payload type: I HDLC short packets (packet < 4 data bytes)
I I
Reset Default 0x0000
ATM discarded cells SDL errored header
1108
15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0
-- PM_FC2_0[27:16] PM_FC2_0[15:0] -- PM_FC2_1[27:16] PM_FC2_1[15:0] -- PM_FC2_2[27:16] PM_FC2_2[15:0] -- PM_FC2_3[27:16] PM_FC2_3[15:0]
1109 110A
110B 110C
110D 110E
110F
This value is updated upon PMRST, and the real-time counter value is reset to zero. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_FC2_0. [7:0] is the LSByte of PM_FC2_0. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_FC2_1. [7:0] is the LSByte of PM_FC2_1. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_FC2_2. [7:0] is the LSByte of PM_FC2_2. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_FC2_3. [7:0] is the LSByte of PM_FC2_3.
0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000
Agere Systems Inc.
239
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 141. Registers 0x1110--0x1117: CRC Checker--Bad Packet Counter (PMRST Update) (RO) Reset default of registers = 0x0000. Address (Hex) 1110--1117 Bit # -- Name PM_BPC_[0--3][27:0] Function CRC Bad Packet Counter Channel [0--3]. Keeps a count of bad packets detected by the CRC checker. This value is updated upon PMRST, and the real-time counter value is reset to zero. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_BPC_0. [7:0] is the LSByte of PM_BPC_0. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_BPC_1. [7:0] is the LSByte of PM_BPC_1. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_BPC_2. [7:0] is the LSByte of PM_BPC_2. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_BPC_3 [7:0] is the LSByte of PM_BPC_3 Reset Default 0x0000
1110
15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0
-- PM_BPC_0[27:16] PM_BPC_0[15:0] -- PM_BPC_1[27:16] PM_BPC_1[15:0] -- PM_BPC_2[27:16] PM_BPC_2[15:0] -- PM_BPC_3[27:16] PM_BPC_3[15:0]
0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000
1111 1112
1113 1114
1115 1116
1117
240
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 142. Registers 0x1118--0x111F: PPP Detach--Mismatched Header Counter (PMRST Update) (RO) Reset default of registers = 0x0000. Address (Hex) 1118--111F Bit # -- Name PM_MHC_[0--3][27:0] Function PPP Mismatched Header Counter Channel [0--3]. Keeps a count of packets with a mismatched header detected by the PPP detach block. This value is updated upon PMRST, and the real-time counter value is reset to zero. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_MHC_0. [7:0] is the LSByte of PM_MHC_0. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_MHC_1. [7:0] is the LSByte of PM_MHC_1. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_MHC_2. [7:0] is the LSByte of PM_MHC_2. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_MHC_3. [7:0] is the LSByte of PM_MHC_3. Reset Default 0x0000
1118
15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0
-- PM_MHC_0[27:16] PM_MHC_0[15:0] -- PM_MHC_1[27:16] PM_MHC_1[15:0] -- PM_MHC_2[27:16] PM_MHC_2[15:0] -- PM_MHC_3[27:16] PM_MHC_3[15:0]
0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000
1119 111A
111B 111C
111D 111E
111F
Agere Systems Inc.
241
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 143. Registers 0x1120--0x1127: Receive Good Packet/Cell Counter (PMRST Update) (RO) Reset default of registers = 0x0000. Address (Hex) 1120--1127 Bit # -- Name PM_GPC_RX_[0--3] [27:0] Function Good Packet/Cell Counter Channel [0--3]. Keeps a count of good packets detected by the receive data engine. This value is updated upon PMRST, and the realtime counter value is reset to zero. In ATM mode, this counter counts the number of good ATM cells received. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_GPC_RX_0. [7:0] is the LSByte of PM_GPC_RX_0. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_GPC_RX_1. [7:0] is the LSByte of PM_GPC_RX_1. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_GPC_RX_2. [7:0] is the LSByte of PM_GPC_RX_2. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_GPC_RX_3. [7:0] is the LSByte of PM_GPC_RX_3. Reset Default 0x0000
1120
15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0
-- PM_GPC_RX_0[27:16] PM_GPC_RX_0[15:0] -- PM_GPC_RX_1[27:16] PM_GPC_RX_1[15:0] -- PM_GPC_RX_2[27:16] PM_GPC_RX_2[15:0] -- PM_GPC_RX_3[27:16] PM_GPC_RX_3[15:0]
0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000
1121 1122
1123 1124
1125 1126
1127
242
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 144. Registers 0x1128--0x112F: Transmit Good Packet/Cell Counter (PMRST Update) (RO) Reset default of registers = 0x0000. Address (Hex) 1128--112F Bit # -- Name PM_GPC_TX_[0--3] [27:0] Function Good Packet/Cell Counter Channel [0--3]. Keeps a count of good packets detected by the transmit data engine. This value is updated upon PMRST, and the realtime counter value is reset to zero. In ATM mode, this counter counts the number of good ATM cells transmitted. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_GPC_TX_0. [7:0] is the LSByte of PM_GPC_TX_0. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_GPC_TX_1. [7:0] is the LSByte of PM_GPC_TX_1. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_GPC_TX_2. [7:0] is the LSByte of PM_GPC_TX_2. Reserved. These bits must be written to their reset default value (0x0). [11:4] is the MSByte of PM_GPC_TX_3. [7:0] is the LSByte of PM_GPC_TX_3. Reset Default 0x0000
1128
15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0 15--12 11--0 15--0
-- PM_GPC_TX_0[27:16] PM_GPC_TX_0[15:0] -- PM_GPC_TX_1[27:16] PM_GPC_TX_1[15:0] -- PM_GPC_TX_2[27:16] PM_GPC_TX_2[15:0] -- PM_GPC_TX_3[27:16] PM_GPC_TX_3[15:0]
0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000 0x0 0x000 0x0000
1129 112A
112B 112C
112D 112E
112F
Table 145. Registers 0x1180--0x1186: Interrupt Masks for Packet Counters (R/W) Reset default of registers = 0x001F. Address (Hex) 1180, 1182, 1184, 1186 Bit # -- Name DEDINTM[0--3] Function Data Interrupt Mask Channel [0--3]. When active (logic 1), the associated event/delta is inhibited from contributing to the interrupt on a per-channel basis. Reserved. These bits must be written to their reset default value (00000000000). Rx-Side Good Packet. PPP Mismatched Header. CRC Bad Packet. ATM/HDLC/SDL Counter 2. ATM/HDLC/SDL Counter 1. Reset Default 0x001F
15--5
--
4 3 2 1 0
-- -- -- -- --
000 0000 0000 1 1 1 1 1
Agere Systems Inc.
243
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 146. Registers 0x1181--0x1187: Interrupts for Packet Counters (COR/W) Reset default of registers = 0x0000. Address (Hex) 1181, 1183, 1185, 1187 Bit # -- Name DEDINT[0--3] Function Data Interrupt Channel [0--3]. Stores bits that describe which conditions of corrupted data exist in channel [0--3]. Reserved. These bits must be written to their reset default value (00000000000). Rx-Side Good Packet. PPP Mismatched Header. CRC Bad Packet. ATM/HDLC/SDL Counter 2. ATM/HDLC/SDL Counter 1. Reset Default 0x0000
15--5
--
4 3 2 1 0
-- -- -- -- --
000 0000 0000 0 0 0 0 0
Table 147. Registers 0x1200--0x1213, 0x12F0: ATM Transmit Registers (R/W) Reset default of registers 0x1200--0x1203, 0x12F0 = 0x0000. Reset default of registers 0x1210--0x1213 = 0x0001. Address (Hex) 1200, 1201, 1202, 1203 1210, 1211, 1212, 1213 Bit # 15--0 Name NULLCELL1[0--3] Function ATM Null (Idle) Cell MSB Channel [0--3]. This defines the first 2 bytes of a NULL ATM cell (i.e., 15:0 = h0h1). ATM Null (Idle) Cell LSB Channel [0--3]. This defines the second 2 bytes of a NULL ATM cell (i.e., 15:0 = h2h3). Reset Default 0x0000
15--0
NULLCELL2[0--3]
0x0001
244
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 147. Registers 0x1200--0x1213, 0x12F0: ATM Transmit Registers (R/W) (continued) Reset default of registers 0x1200--0x1203, 0x12F0 = 0x0000. Reset default of registers 0x1210--0x1213 = 0x0001. Address (Hex) 12F0 Bit # -- Name ATM_HEADER_ERROR Function ATM Tx Debug Control. Used for debug purposes to inject errors, and to increment the payload sequence for NULL cells. Reserved. These bits must be written to their reset default value (0x00). Incrementing Null (Idle) Cell Payload Sequence. This bit governs whether 0x6A is used for the payload of NULL cells, or whether an incrementing 8-bit count is used (0x00 0xFF). A value of 1 selects the incrementing sequence. This is used with DE register 0x1002 bits [11:8]. Error Strobe. Writing a value of 1 to this register initiates the injection of a single or double shot error injection, assuming one of these two modes is selected. Error Injection Mode. These bits control the mode of operation of the error injection. 00 = continuous injection 01 = single shot (isolated cell) 3--2 -- 10, 11 = double shot (i.e., two back-to-back cells) Error Type. These bits control the injection of a walking error pattern into the headers of all outgoing cells. 00 = no errors 01 = single bit errors 1--0 -- 10, 11 = double bit errors Error Channel ID. The logical channel in which to inject the header errors. 00 00 Reset Default 0x0000
15--8 7
-- --
0x00 0
6
--
0
5--4
--
00
Agere Systems Inc.
245
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 148. Registers 0x1400--0x1403: SDL State Registers (RO) Reset default of registers = 0x0000. Address (Hex) 1400, 1401, 1402, 1403 Bit # -- 15--4 3--2 Name SDL_ST[0--3] -- -- Function SDL State Channel [0--3]. These registers describe the SDL framer and scrambler states. Reserved. These bits must be written to their reset default value (0x000). SDL Frame State. Indicates the frame state of each channel. SDL_ST[0--3][3:2] = 00. Out-of-Frame. The SDL framer is in search of a successful SDL framing. SDL_ST[0--3][3:2] = 01. Presync. The SDL framer has transitioned from the out of frame to the presync state. The SDL framer has successfully framed one SDL header. SDL_ST[0--3][3:2] = 10. Sync. The SDL framer has transitioned from the presync to the sync state. The framer has successfully detected the second consecutive SDL packet. The SDL framer is correctly framed on the SDL signal. The SDL framer remains in the sync state until a bad packet frame is detected. Detection of a bad packet frame places the SDL framer in the out-of-frame state. SDL_ST[0--3][3:2] = 11. Undefined. SDL Scram State. Indicates the X48 sync state of each channel. SDL_ST[0--3][1:0] = 00. Hunt. The SDL scrambler has yet to detect a valid scrambler state. SDL_ST[0--3][1:0] = 01. Sync. The SDL scrambler is in sync. SDL_ST[0--3][1:0] = 10. Postsync. The SDL scrambler was in sync, but detected an SDL state that did not match the expected state. If two consecutive nonmatching states are detected, then (1) the SDL framer is reset with the scrambler state received in the bit stream, and (2) a sync slip interrupt is generated. SDL_ST[0--3][1:0] = 11. Undefined. Reset Default 0x0000 0x000 00
1--0
--
00
246
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 149. Registers 0x1470--0x1473: A Message Mailbox Registers (RO) Reset default of registers = 0x0000. Address (Hex) 1470, 1471, 1472, 1473 Bit # 15--0 Name SDL_AMM1[0--3] Function A Message Mailbox 1: Channel [0--3]. These registers will store the first 16 bits of a valid A message header. A maskable interrupt will be generated if the SDL framer receives an A message. Reset Default 0x0000
Table 150. Registers 0x1480--0x1483: A Message Mailbox Registers (RO) Reset default of registers = 0x0000. Address (Hex) 1480, 1481, 1482, 1483 Bit # 15--0 Name SDL_AMM2[0--3] Function A Message Mailbox 2: Channel [0--3]. These registers will store the middle 16 bits of a valid A message header. A maskable interrupt will be generated if the SDL framer receives an A message. Reset Default 0x0000
Table 151. Registers 0x1490--0x1493: A Message Mailbox Registers (RO) Reset default of registers = 0x0000. Address (Hex) 1490, 1491, 1492, 1493 Bit # 15--0 Name SDL_AMM3[0--3] Function A Message Mailbox 3: Channel [0--3]. These registers will store the last 16 bits of a valid A message header. A maskable interrupt will be generated if the SDL framer receives an A message. Reset Default 0x0000
Table 152. Registers 0x14A0--0x14A3: B Message Mailbox Registers (RO) Reset default of registers = 0x0000. Address (Hex) 14A0, 14A1, 14A2, 14A3 Bit # 15--0 Name SDL_BMM1[0--3] Function B Message Mailbox 1: Channel [0--3]. These registers will store the first 16 bits of a valid B message header. A maskable interrupt will be generated if the SDL framer receives a B message. Reset Default 0x0000
Agere Systems Inc.
247
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 153. Registers 0x14B0--0x14B3: B Message Mailbox Registers (RO) Reset default of registers = 0x0000. Address (Hex) Bit # Name SDL_BMM2[0--3] Function B Message Mailbox 2: Channel [0--3]. These registers will store the middle 16 bits of a valid B message header. A maskable interrupt will be generated if the SDL framer receives a B message. Reset Default 0x0000
14B0, 14B1, 15--0 14B2, 14B3
Table 154. Registers 0x14C0--0x14C3: B Message Mailbox Registers (RO) Reset default of registers = 0x0000. Address (Hex) Bit # Name SDL_BMM3[0--3] Function B Message Mailbox 3: Channel [0--3]. These registers will store the last 16 bits of a valid B message header. A maskable interrupt will be generated if the SDL framer receives a B message. Reset Default 0x0000
14C0, 14C1, 15--0 14C2, 14C3
Table 155. Registers 0x14D0--0x14D3: SDL Interrupt Masks (R/W) Reset default of registers = 0x00FF. Address (Hex) 14D0, 14D1, 14D2, 14D3 Bit # -- Name SDLINTM[0--3] Function SDL Interrupt Mask Channel [0--3]. When active (logic 1), the associated event/delta is inhibited from contributing to the interrupt on a per-channel basis. Reserved. These bits must be written to their reset default value (0x00). B_Message Reception. A_Message Reception. Uncorrectable Special Payload Error. Uncorrectable Bit Error. Reserved. This bit must be written to its reset default value (1). Single Bit Error. Scrambler Out of Sync. Framer Out of Sync. Reset Default 0x00FF
15--8 7 6 5 4 3 2 1 0
-- -- -- -- -- -- -- -- --
0x00 1 1 1 1 1 1 1 1
248
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 156. Registers 0x14E0--0x14E3: SDL Interrupts (COR/W) Reset default of registers = 0x0000. Address (Hex) 14E0, 14E1, 14E2, 14E3 Bit # -- Name SDLINT[0--3] Function SDL Interrupt Channel [0--3]. Used to record various occurrences within the SDL framer. The bits will generate an interrupt if defined by the interrupt mask, but the register values here are independent of the interrupt mask values. Reserved. These bits must be written to their reset default value (0x00). B_Message Reception. A_Message Reception. Uncorrectable Special Payload Error. Indicates occurrence of two or more special payload errors. Uncorrectable Header Bit Error. Indicates occurrence of two or more header errors. Reserved. This bit must be written to its reset default value (0). Single Bit Header Error. Scrambler Out of Sync. Indicates a scrambler sync slip. Framer Out of Sync. Reset Default 0x0000
15--8 7 6 5
-- -- -- --
0x00 0 0 0
4 3 2 1 0
-- -- -- -- --
0 0 0 0 0
Table 157. Register 0x14F0: SDL Receive Configuration Registers (R/W) Reset default of registers = 0x0001. Address (Hex) 14F0 Bit # -- 15--7 6 Name SDL_DELTA -- -- Function SDL Receive Frame Configuration Register. Reserved. These bits must be written to their reset default value (000000000). Disable Scrambling. When this value is 1, the SDL framer will not unscramble the data prior to framing. Reserved. These bits must be written to their reset default value (0). Sync Mode. When bit 4 has a value of 1, then only one framer is used at all times to frame SDL data. Normally, this bit is 0, and four coordinated framers are active simultaneously to synchronize the scrambler process. Framer Delta. This register will define the delta value for the CRC-16 framer. Reset Default 0x0001 0000 00000 0
5 4
-- --
0 0
3--0
--
0x1
Agere Systems Inc.
249
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 158. Registers 0x1600--0x1607: SDL Transmit Registers (R/W) Reset default of registers 0x1600, 0x1601, 0x1602, 0x1603, 0x1606 = 0x0000. Reset default of register 0x1604 = 0x0008. Reset default of register 0x1605 = 0x8000. Note: These registers must be written in the following order: 0x1603, then 0x1600, 0x1601, 0x1602. Register 0x1603 is a clear-on-write (COW) register. Address (Hex) 1600 Bit # 15--0 Name SDLFI_MSG1 Function SDL Message. These registers will store the first 16 bits of a header of an outgoing A or B message. SDL Message. These registers will store the middle 16 bits of a header of an outgoing A or B message. SDL Message. These registers will store the last 16 bits of a header of an outgoing A or B message. Writing to this register causes the message to be sent. SDL Message Type. Message Type Bit. 0 = A Message 14--2 -- 1 = B Message Reserved. These bits must be written to their reset default value (00000000000000). 0 0000 0000 0000 00 0x0008 Reset Default 0x0000
1601
15--0
SDLFI_MSG2
0x0000
1602
15--0
SDLFI_MSG3
0x0000
1603
-- 15
SDLFI_MSG_TYPE SDLMTB
0x0000 0
1--0 1604 15--0
SDLCHID[1:0] SDLFI_INT
Channel ID. Defines on which channel the special message will be transmitted. SDL State Transmit Interval. Defines the number of packets (or dWords) separating scrambler state transmissions. Use register 0x1605 to determine if units are packets or dwords.
250
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Register Descriptions (continued)
DE Registers (continued)
Table 158. Registers 0x1600--0x1607: SDL Transmit Registers (R/W) (continued) Reset default of registers 0x1600, 0x1601, 0x1602, 0x1603, 0x1606 = 0x0000. Reset default of register 0x1604 = 0x0008. Reset default of register 0x1605 = 0x8000. Note: These registers must be written in the following order: 0x1603, then 0x1600, 0x1601, 0x1602. Register 0x1603 is a clear-on-write (COW) register. Address (Hex) 1605 Bit # -- 15 Name SDLFI_MODE SDLSMIE Function SDL State Transmit Mode. Special Message Interrupt Enable. The SDL line transmitter generates an interrupt when transmission of a special message is complete. In this case, used to signal the sending of a special message (A or B message). Reserved. These bits must be written to their reset default value (0000000000000). Reset Default 0x8000 1
14--2
--
1
SDLSC
Scrambler Control. 1 = disables data scrambling
0 0000 0000 0000 0
0
SDLSSTMS
0 = enables data scrambling Scrambler State Transmit Mode Select. 0 = packets 1 = dWord (32 bits)
0
Agere Systems Inc.
251
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Register Descriptions (continued)
DE Registers (continued)
Table 158. Registers 0x1600--0x1607: SDL Transmit Registers (R/W) (continued) Reset default of registers 0x1600, 0x1601, 0x1602, 0x1603, 0x1606 = 0x0000. Reset default of register 0x1604 = 0x0008. Reset default of register 0x1605 = 0x8000. Note: These registers must be written in the following order: 0x1603, then 0x1600, 0x1601, 0x1602. Register 0x1603 is a clear-on-write (COW) register. Address (Hex) 1606 Bit # -- 15--2 Name SDLFI_INTR -- Function Status Register. Reserved. These bits must be written to their reset default value (000000000000000). Reset Default 0x0000 00 0000 0000 0000 0
1
SDLFDO
0
SDLMSI
1607
-- 15--6
SDLFI_DEBUG --
SDLFIFO Depth Out. When this bit has a value of 1, it indicates that the FIFO in the SDL Tx data buffer is over half full. Message Sent Interrupt. When this bit has a value of 1, it indicates that an SDL A/B message has been sent. This value may be cleared when read or written. SDL Debug Register. Reserved. These bits must be written to their reset default value (0000000000). Header Error. This value indicates the number of errors to insert into the SDL header on a given channel for debug purposes. The error injection is done using a walking ones pattern to cover all possibilities. 0x0 = no errors 0x1 = single error 0x2 = double error 0x3 = double error Payload Error. This value indicates the number of errors to insert into the payload of special packets on a given channel for debug purposes. The error injection is done using a walking ones pattern to cover all possibilities. 00 = no errors 01 = single error 10 = double error 11 = double error Error Channel ID. This value specifies the channel on which the errors are to be sent.
0
5--4
SDLHE[1:0]
0x0000 00 0000 0000 00
3--2
SDLPE[1:0]
00
1--0
SDLECID[1:0]
00
252
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. Parameter Power Supply Voltage Storage Temperature Pin Voltage (3.3 V) Pin Voltage (5 V tolerant)
Note: VDD = VDDA = VDDD.
Min -0.5 -65 GND - 0.5 GND - 0.5
Max 4.2 125 VDD + 0.5 5.5
Unit V C V V
Handling Precautions
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. Agere employs a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used in the defined model. No industry-wide standard has been adopted for the CDM. However, a standard HBM (resistance = 1500 , capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes: Device TDAT042G5 TDAT042G51A Voltage TBD TBD
Operating Conditions
Table 159. Recommended Operating Conditions Parameter Power Supply (dc voltage) Ground Input Voltage: Low High Ambient Temperature Power Dissipation (VDD = 3.465 V)
Note: VDD = VDDA = VDDD.
Symbol VDD -- VIL VIH -- PD
Min 3.135 -- GND VDD - 1.0 -40 --
Typ -- -- -- -- -- --
Max 3.465 -- 1.0 VDD 85 7.5
Unit V V V V C W
Agere Systems Inc.
253
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Electrical Characteristics
The following characteristics are guaranteed over the recommended operating conditions, unless otherwise specified in the test conditions. Table 160. 3.3 V Logic Interface Characteristics These logic levels are TTL 5 V compliant. Parameter Input Leakage Output Voltage: Low High Input Capacitance Load Capacitance
Note: VDD = VDDA = VDDD.
Symbol IL VOL VOH CI CL
Test Conditions -- -5.0 mA 5.0 mA -- *
Min -- GND VDD - 1.0 -- --
Max 1.0 0.5 VDD -- --
Unit A V V pF pF
* Load for the UTOPIA ports are given in Table 170, page 269. Load for all microprocessor outputs is 50pF.
Table 161. LVPECL Interface Characteristics The range for VDD in this table is as follows: 3.0 V < VDD < 3.63 V, and VDD nominal = 3.30 V. Parameter Output Voltage: Low High Input Voltage: Low High Input Capacitance Load Capacitance Input Buffer Gain
Note: VDD = VDDA = VDDD.
Symbol
Test Conditions -- -- -- -- -- -- --
Min
Nominal
Max
Unit
VOL VOH VIL VIH CI CL VG
VDD - 1.810 VDD - 1.025 VDD - 1.810 VDD - 1.165 -- -- --
-- -- -- -- -- 125
VDD - 1.620 VDD - 0.880 VDD - 1.475 VDD - 0.880 2.5 0.4 --
V V V V pF pF dB
254
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Electrical Characteristics (continued)
Table 162. LVPECL 3.3 V Logic Interface Characteristics VDDD has a range of 3.0 V < VDDD < 3.63 V, VDDD typical = 3.3 V. Parameter Input Leakage Current Input Common Mode Voltage Output Voltage: Low High Output Voltage Swing Input Capacitance Load Capacitance Input Buffer Gain Range1 Symbol IL VCMR Min -- 1 VDDD - 1.97 VDDD - 1.025 0.595 -- -- -- Typical -- -- -- -- -- -- -- 125 Max 20 2.75 VDDD - 1.620 VDDD - 0.72 1.25 2.3 0.4 -- Unit A V V V V pF pF dB
VOLLVPECL VOHLVPECL VOSWING CI CL VG
1. With a swing of 300 mV: VID = 300 mV where VIL (min) = 0.85 V and VIH (max) = 2.9 V.
Agere Systems Inc.
255
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Timing Specifications
This section specifies the interface timing requirements for the microprocessor interface, line interface, UTOPIA interface, and SONET transport overhead (TOAC) interface.
Microprocessor Interface Timing
In all modes of the microprocessor interface, the CS may be held active continuously without affecting the functionality of TDAT042G5. There is no minimum time between successive microprocessor accesses to TDAT042G5, i.e., successive reads or writes may be back to back. Synchronous Mode The synchronous microprocessor interface mode is selected when MPMODE (pin D8) = 1. Interface timing for the synchronous mode write cycle is given in Figure 38 and in Table 163 (pages 256--257), and for the read cycle in Figure 39 and in Table 164 (pages 258--259).
T0 MPCLK (66 MHz MAX) t1 ADDR[15:0] t3 CS t4 ADS t1 R/W t2 t5 t2 T1 T2 T3 T4 T5
t1 DATA[15:0] (INPUT)
t2
t7 t6 HIGH Z HIGH Z
5-7659(F)r.2
DT
Figure 38. Microprocessor Interface Synchronous Write Cycle (MPMODE (Pin D8) = 1)
256
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Timing Specifications (continued)
Microprocessor Interface Timing (continued)
Synchronous Mode (continued) ADDR[15:0] The address will be available throughout the entire cycle. DATA[15:0] R/W (Input) CS (Input) Data will be available during cycles T1 through T5. The read (H) write (L) signal is always high except during a write cycle. Chip select is an active-low signal.
DT (Output) Data transfer acknowledge is active-low on the host bus interface. It is initiated in timing cycle T5. DT is 3-stated when CS is high. ADS (Input) Address strobe is active-low for one clock cycle, T0. When used with the Power PC* (Motorola MPC860), this is TS (transfer start).
* PowerPC is a registered trademark of International Business Machines Corporation. Motorola is a registered trademark of Motorola, Inc.
Table 163. Microprocessor Interface Synchronous Write Cycle Specifications (See Figure 38 on page 256 for the timing diagram.) Symbol Parameter Setup (ns) (Min) 3 -- 3.5 5.5 -- -- -- Hold (ns) (Min) -- 5 -- -- 5 -- 1 Delay (ns) (Max) -- -- -- -- -- 8 --
t1 t2 t3 t4 t5 t6 t7
ADDR, R/W, DATA (write) Valid to MPCLK MPCLK to ADDR, R/W, DATA (write) Invalid CS Valid to MPCLK ADS Valid to MPCLK MPCLK to ADS Invalid MPCLK to DT Valid MPCLK to DT Invalid
Agere Systems Inc.
257
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Timing Specifications (continued)
Microprocessor Interface Timing (continued)
Synchronous Mode (continued)
T0 MPCLK (66 MHz MAX) t8 ADDR[15:0] t10 CS t11 ADS t12 t9 T1 T2 T3 T4 T5 T6
R/W t13 DT DATA[15:0] (OUTPUT) HIGH Z t15 HIGH Z t16 HIGH Z
5-7660(F)r.6
t14 HIGH Z
Figure 39. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin D8) = 1) ADDR[15:0] The address will be available throughout the entire cycle. DATA[15:0] R/W (Input) CS (Input) Read data is available in T6. The read (H) write (L) signal is always high during the read cycle. Chip select is an active-low signal.
DT (Output) Data transfer acknowledge on the host bus interface is initiated on T6. DT is 3-stated when CS is high. ADS (Input) Address strobe is active-low for one clock cycle, T0. When used with the Power PC (Motorola MPC860), this is TS (transfer start).
258
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Timing Specifications (continued)
Microprocessor Interface Timing (continued)
Synchronous Mode (continued) Table 164. Microprocessor Interface Synchronous Read Cycle Specifications (See Figure 39 on page 258 for the timing diagram.) Symbol Parameter Setup (ns) (Min) 3 -- 3.5 5.5 -- -- -- -- -- Hold (ns) (Min) -- 5 -- -- 5 -- 1 -- 1 Delay (ns) (Max) -- -- -- -- -- 8 -- 24 --
t8 t9 t10 t11 t12 t13 t14 t15 t16
ADDR Valid to MPCLK MPCLK to ADDR Invalid CS Valid to MPCLK ADS Valid to MPCLK MPCLK to ADS Invalid MPCLK to DT Valid MPCLK to DT Invalid MPCLK to DATA Valid MPCLK to DATA 3-state
Agere Systems Inc.
259
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Timing Specifications (continued)
Microprocessor Interface Timing (continued)
Asynchronous Mode The asynchronous microprocessor interface mode is selected when MPMODE (pin D8) = 0. Interface timing for the asynchronous mode write cycle is given in Figure 40 and in Table 165 (see pages 260--261), and for the read cycle in Figure 41 and in Table 166 (see pages 262--263).
ADDR[15:0] t17 CS t19 ADS t21 DS t23 R/W t24 t22 t20 t18
t25 DATA[15:0] (INPUT)
t26
t27 DT HIGH Z t28
t29
t30 HIGH Z
5-7661(F)r.3
Figure 40. Microprocessor Interface Asynchronous Write Cycle Description (MPMODE (Pin D8) = 0) ADDR[15:0] The address must be valid when ADS is low. DATA[15:0] R/W (Input) CS (Input) Data must be valid when DS is low. The read (H) write (L) signal is always high except during a write cycle. Chip select is an active-low signal.
DT (Output) Data transfer acknowledge (active-low). DT is driven asynchronously based on the arrival of CS. DT is driven high until the internal transaction is done. DT is driven high again when ADS is deasserted. DT will become 3-stated when CS is high. ADS (Input) Address strobe is active-low. The microprocessor can pull ADS high after DT goes high. DS (Input) Data strobe is active-low.
260
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Timing Specifications (continued)
Microprocessor Interface Timing (continued)
Asynchronous Mode (continued) Table 165. Microprocessor Interface Asynchronous Write Cycle Specifications (See Figure 40 on page 260 for the timing diagram.) Symbol t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 CS Fall to DS Fall ADDR Invalid to CS Rise ADDR Valid to ADS Fall ADS Rise to ADDR Invalid ADDR Valid to DS Fall DS Rise to ADDR Invalid R/W Fall to DS Fall DS Rise to R/W Rise DATA Valid to DS Fall DS Rise to DATA Invalid CS Fall to DT High DS Fall to DT Fall ADS Rise to DT Rise CS Rise to DT 3-state Parameter Min Interval Max Interval (ns) (ns) 0 0 0 5 0 0 0 0 0 0 0 77 0 0 -- -- -- -- -- -- -- -- -- -- -- 103 37.5 --
Agere Systems Inc.
261
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Timing Specifications (continued)
Microprocessor Interface Timing (continued)
Asynchronous Mode (continued)
ADDR[15:0] t31 CS t33 ADS t35 DS t36 t34 t32
R/W
t37 t38 DT DATA[15:0] HIGH Z t41 HIGH Z t42 t39
t40 HIGH Z
HIGH Z
5-7662(F)r.6
Figure 41. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin D8) = 0) ADDR[15:0] The address must be valid when ADS is low. DATA[15:0] R/W (Input) CS (Input) Read data becomes available after DT goes low. It will be 3-stated when ADS goes high. The read (H) write (L) signal is always high during a read cycle. Chip select is an active-low signal.
DT (Output) Data transfer acknowledge (active-low). DT is driven asynchronously based on the arrival of CS, DS, and ADS. DT is driven high while the internal bus transaction is in progress. There is no need to provide synchronization to outgoing signals in this mode. DT is driven high and then placed in a highimpedance state when either ADS or DS is deasserted. DT will become 3-stated when CS is high. ADS (Input) Address strobe is active-low. The microprocessor can pull ADS high after DT goes high. DS (Input) Data strobe is active-low.
262
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Timing Specifications (continued)
Microprocessor Interface Timing (continued)
Asynchronous Mode (continued) Table 166. Microprocessor Interface Asynchronous Read Cycle Specifications (See Figure 41 on page 262 for the timing diagram.) Symbol t31 t32 t33 t34 t35 t36 t37 t38 t39 t40 t41 t42 Reset Software Reset. Writing the binary value 101 to SWRST (core register 0x000E, bits 2--0) causes a 0 to 1 transition on the internal PMRST signal. This pulse will be high for 100 clock cycles and then low for 100 clock cycles of the 77.76 MHz internal clock. Writing a logic 1 to these bits during this 200 clock-cycle interval (2.57 s) has no effect. Interrupt. Occurrence of an interrupt is event driven. The interrupt pin, INT (B7), will be deasserted after a minimum of either one MPU clock cycle in the synchronous microprocessor mode or 13 ns in the asynchronous microprocessor mode after clearing the interrupt register. CS Fall to DS Fall ADDR Invalid to CS Rise ADDR Valid to ADS Fall ADS Rise to ADDR Invalid ADDR Valid to DS Fall DS Rise to ADDR Invalid CS Fall to DT High DS Fall to DT Fall ADS Rise to DT Rise CS Rise to DT 3-state DT Valid to DATA Valid ADS Rise to DATA 3-state Parameter Min Interval Max Interval (ns) (ns) 0 0 0 5 0 0 0 90 -- 0 -- 0 -- -- -- -- -- -- -- 115 37.5 -- 12 --
Agere Systems Inc.
263
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Timing Specifications (continued)
Line Interface I/O Timing
Note: VDD = VDDA = VDDD (3.300 volts nominal) in this section. Figure 42--Figure 45, Table 167, and Table 168 give the timing specifications for the STS-3/STM-1, STS-12/STM-4, and STS-48/STM-16 interfaces.
t43 t44 RxCKP/RxCLK[D:A]P
VIH (MIN) 50% VIL (MAX)
t45
RxCKN/RxCLK[D:A]N
t46
t47
t48 RxD[15:0]P/RxD[D:A]P
t49
RxD[15:0]N/RxD[D:A]N
5-9252 (F)r.4
Figure 42. Receive Line-Side Timing Waveform
264
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Timing Specifications (continued)
Line Interface I/O Timing (continued)
t50 t51 TxCKP
VIH (MIN) 50% VIL (MAX)
t52
TxCKN t55
t53
t54
TxD[15:0]P/TxD[D:A]P*
50%
TxD[15:0]N/TxD[D:A]N*
5-9253(F).i
* Loading of TxD[15:4]P/N is12 pF. Loading of TxD[3:0]P/N / TxD[D:A]P/N is 8 pF with the PLL on, and 12 pF with the PLL off.
Figure 43. Transmit Line-Side Timing Waveform-- STS-48/STM-16 Contraclocking
TxCKP
VIH (MIN) 50% VIL (MAX)
TxCKN
t59 TxFSYNCN
t60
TxFSYNCP
t61
5-9253(F).g
Figure 44. Transmit Line-Side Timing Waveform--Frame Synch
TxCKP
VIH (MIN) 50% VIL (MAX)
TxCKN t56 TxCKQP
50%
TxCKQN t57 TxD[15:0]P/TxD[D:A]P*
50%
TxD[15:0]N/TxD[D:A]N*
t58
5-9253(F).h
* Loading of TxD[15:4]P/N is12 pF. Loading of TxD[3:0]P/N / TxD[D:A]P/N is 8 pF with the PLL on, and 12 pF with the PLL off.
Figure 45. Transmit Line-Side Timing Waveform--STS-48/STM-16 Forward Clocking Agere Systems Inc. 265
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Timing Specifications (continued)
Line Interface I/O Timing (continued)
For the following tables, VIL (max) = (VDD -1.475) volts, nominal of 1.825 volts; VIH (min) = (VDD -1.165) volts, nominal of 2.135 volts; VOH (min) = (VDD -1.025) volts, nominal of 2.275 volts; VOL (max) = (VDD -1.620) volts, nominal of 1.680 volts. Table 167. Receive Line-Side Timing Specifications Symbol t43 Parameter Receive Clock-Cycle Period: STS-3/STM-1 and STS-48/STM-16 STS-12/STM-4 Receive Clock Rise Receive Clock Fall Receive Clock Pulse Low (for P input): STS-3/STM-1 and STS-48/STM-16 STS-12/STM-4 Receive Clock Pulse High (for P input): STS-3/STM-1 and STS-48/STM-16 STS-12/STM-4 RxD[15:0]P/N / RxD[D:A]P/N Setup RxD[15:0]P/N / RxD[D:A]P/N Hold Min -- -- -- -- 2.800 700 2.800 700 100 100 Typ 6.4300 1.60751 -- -- 3.2150 803.75 3.2150 803.75 -- -- Max -- -- 500 500 3.630 907 3.630 907 -- -- Units ns ns ps ps ns ps ns ps ps ps
t44 t45 t46
t47
t48 t49
266
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Timing Specifications (continued)
Line Interface I/O Timing (continued)
Table 168. Transmit Line-Side Timing Specifications Symbol t50 Parameter Transmit Clock-Cycle Period: STS-3/STM-1 and STS-48/STM-16 STS-12/STM-4 Transmit Clock Rise Transmit Clock Fall Transmit Clock Pulse Low (for P input): STS-3/STM-1 and STS-48/STM-16 STS-12/STM-4 Transmit Clock Pulse High (for P input): STS-3/STM-1 and STS-48/STM-16 STS-12/STM-4 Propagation Delay--contra clocking: (TxCKP/N to TxD[15:0]P/N, with PLL) Propagation Delay--forward clocking: (TxCKP/N to TxCKQP/N)* Propagation Delay--forward clocking: (TxCKQP/N to TxD[15:0]P/N, no PLL)* Propagation Delay--forward clocking: (TxCKP/N to TxD[15:0]P/N, no PLL) TxFSYNC Setup TxFSYNC Hold Transmit TxFSYNC width: STS-3/STM-1 and STS-48/STM-16 STS-12/STM-4 Min -- -- -- -- 2.800 700 2.800 700 1 1.5 0.5 2 100 100 6.430 1.608 Typ 6.4300 1.60751 -- -- 3.2150 803.75 3.2150 803.75 -- -- -- -- -- -- -- -- Max -- -- 500 500 3.630 907 3.630 907 3 4.5 1.5 5 -- -- 19,438 77,758 Units ns ns ps ps ns ps ns ps ns ns ns ns ps ps clock cycles clock cycles
t51 t52 t53
t54
t55 t56 t57 t58 t59 t60 t61
* TxCKQP/N is used in STS-48/STM-16 mode only. TxFSYNCP/N must be synchronized to TxCKP/N; it must be at least one TxCKP/N clock-cycle wide, but less than one frame period minus two TxCKP/N clock-cycles wide.
Agere Systems Inc.
267
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Timing Specifications (continued)
UTOPIA Interface Timing
UTOPIA interface timing specifications are given for the transmit direction in Figure 46 and in Table 169, and for the receive direction in Figure 47 and in Table 170 (see page 269). Specifications for the UTOPIA clock interface are given in Table 171 (see page 270).
INPUT TxCLK[D:A] t62 TxENB[D:A] TxSZ[D:A] TxPRTY[D:A] TxSOP[D:A] INPUTS TxEOP[D:A] TxERR[D:A] TxDATA[D:A][15:0] t63
t64 OUTPUT TxPA[D:A]
5-7663(F)r.5
Figure 46. Transmit UTOPIA Interface Timing Table 169. Transmit UTOPIA Interface Timing Specifications Symbol Test Conditions Setup (Min) Hold (Min) Propagation Delay (Min) t62 t63 t64 U3, U3+ U2, U2+ U3, U3+ U2, U2+ U3, U3+ U2, U2+ 2.5 4.0 -- -- -- -- -- -- 0.0 1.0 -- -- -- -- -- -- 2.0 2.0 (Max) -- -- -- -- 5.0 13.0 ns ns ns ns ns ns Unit
268
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Timing Specifications (continued)
UTOPIA Interface Timing (continued)
INPUT TxCLK[D:A] t65 INPUT/OUTPUT RxCLK[D:A]
t66 t67 INPUT RxENB[D:A]
OUTPUTS
RxPA[D:A] RxSZ[D:A] RxPRTY[D:A] RxSOP[D:A] RxEOP[D:A] RxERR[D:A] RxDATA[D:A][15:0]
t68
5-7664(F)r.4
Figure 47. Receive UTOPIA Interface Timing Table 170. Receive UTOPIA Interface Timing Specifications Symbol Test Conditions 52 MHz RxCLK 104 MHz t65 t66 * CL = 25 pF -- t67 CL = 25 pF -- t68 CL = 25 pF -- RxCLK 52 MHz * -- CL = 50 pF -- CL = 50 pF -- CL = 50 pF Setup (Min) Hold (Min) Propagation Delay Range (Min) -- -- -- -- -- 2.0 4.0 (Max) -- -- -- -- -- 6.5 13.0 (Min) 2.3 -- -- -- -- -- -- (Max) 5.0 -- -- -- -- -- -- ns ns ns ns ns ns ns Unit
-- 2.5 4.0 -- -- -- --
-- -- -- 0.0 1.0 -- --
* TxCLK[D:A] of the corresponding port is the source for RxCLK[D:A]. RxCLK[D:A] is an output in this case. CL is the load on the outputs listed in Figure47. The UTOPIA Level 2 standard specifies a loading of 50 pF at 52 MHz. The UTOPIA L evel 3 standard specifies a loading of 25 pF in point-to-point configuration (only two devices involved).
Agere Systems Inc.
269
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Timing Specifications (continued)
UTOPIA Interface Timing (continued)
Table 171. UTOPIA Interface Clock Specifications Mode Signal Name Parameter Test Conditions Transmit U3+ TxCLK[D:A] TxCLK Frequency TxCLK Duty Cycle TxCLK Peak-to-Peak Jitter TxCLK Rise/Fall Time TxCLK Skew Receive U3+ RxCLK[D:A] RxCLK Frequency RxCLK Duty Cycle RxCLK Peak-to-Peak Jitter RxCLK Rise/Fall Time RxCLK Skew RxCLK-toRxCLK Skew (Source Mode) Transmit U2+ TxCLK[D:A] TxCLK Frequency TxCLK Duty Cycle TxCLK Peak-to-Peak Jitter TxCLK Rise/Fall Time TxCLK Skew Receive U2+ RxCLK[D:A] RxCLK Frequency RxCLK Duty Cycle RxCLK Peak-to-Peak Jitter RxCLK Rise/Fall Time RxCLK Skew RxCLK-toRxCLK Skew (Source Mode) 52 MHz, Multi-PHY Signal 0 40 -- -- -- -- 50 60 5 2 1 700 MHz % % ns ns ps 52 MHz, Multi-PHY Signal 0 40 -- -- -- 50 60 5 2 1 MHz % % ns ns 104 MHz, Multi-PHY Signal 0 40 -- -- -- -- 104 60 2 2 1 700 MHz % % ns ns ps 104 MHz, Multi-PHY Signal 0 40 -- -- -- 104 60 2 2 1 MHz % % ns ns Min Max Unit
270
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Interface Timing Specifications (continued)
Transport Overhead Access Channel (TOAC) Interface Timing
Transport overhead access channel (TOAC) interface timing specifications are given for the transmit direction in Figure 48 and in Table 172. The specifications for the receive direction are given in Figur e49, Figur e50, and in Table 173.
33% OUTPUT--TxTOHCK DUTY CYCLE CLOCK 5.184 MHz (STS-3/STM-1) 20.736 MHz (STS-12/STM-4) (STS-48/STM-16) 66% 50% 50% 50% 50% 50% 50% 33% 66%
(0.75)tCP*
tCP t69 t70
INPUT--TxTOHD[D:A]
t71 OUTPUT--TxTOHF 8 kHz
0151(F).a
* Clock pulse tCP = x/y, where: x = 32 for STS-3/STM-1 and STS-12/STM-4, or x = 8 for STS-48/STM-16; y = clock frequency in MHz on the transmit line clock pins TxCKP/N. Note: Duty cycles shown are nominal.
Figure 48. Transmit TOAC Interface Timing Table 172. Transmit TOAC Interface Timing Specifications Symbol t69 t70 t71 Test Conditions -- -- CL = 50 pF Setup (Min) 10 -- -- Hold (Min) -- 10 -- Propagation Delay (Min) -- -- 0 (Max) -- -- 10 ns ns ns Unit
Agere Systems Inc.
271
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Interface Timing Specifications (continued)
Transport Overhead Access Channel (TOAC) Interface Timing (continued)
33% OUTPUT--RxTOHCK[D:A] DUTY CYCLE CLOCK 20.736 MHz (STS-12/STM-4) (STS-48/STM-16) 66% 50% 50% 50% 50% 50% 50% 33% 66%
(0.75)tCP*
tCP t72
RxTOHD[D:A]
OUTPUTS
t73 RxTOHF[D:A] 8 kHz
0152(F).a
* Clock pulse tCP = x/y, where: x = 32 for STS-3/STM-1 and STS-12/STM-4, or x = 8 for STS-48/STM-16; y = clock frequency in MHz on the transmit line clock pins TxCKP/N. Note: Duty cycles shown are nominal.
Figure 49. STS-12/STM-4 and STS-48/STM-16 Receive TOAC Interface Timing
33% OUTPUT--RxTOHCK[D:A] DUTY CYCLE CLOCK 5.184 MHz (STS-3/STM-1)
66%
50%
50%
50%
50%
50%
50%
33%
66%
tCP t72 RxTOHD[D:A]
OUTPUTS
(0.75)tCP*
t73 RxTOHF[D:A] 8 kHz
0153(F).a
* Clock pulse tCP = x/y, where: x = 32 for STS-3/STM-1 and STS-12/STM-4, or x = 8 for STS-48/STM-16; y = clock frequency in MHz on the transmit line clock pins TxCKP/N. Note: Duty cycles shown are nominal.
Figure 50. STS-3/STM-1 Receive TOAC Interface Timing Table 173. Receive TOAC Interface Timing Specifications Symbol t72 t73 Test Conditions CL = 50 pF CL = 50 pF Propagation Delay (Min) 0 0 (Max) 10 10 ns ns Unit
272
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Reference of SONET/SDH Terms and Comparisons
Definitions of SONET/SDH Bytes
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
A1: Framing byte 0xF6 A2: Framing byte 0x28 B1: BIP-8 parity for section (regenerator section) B2: BIP-8xN parity for STS-N signal for line (multiplexer section) B3: BIP-8 parity for path C1: Redefined to J0/Z0 D1--D3: Section (regenerator section) data communication channels D4--D12: Line (multiplexer section) data communication channels E1: Section (regenerator section) orderwire E2: Line (multiplexer section) orderwire F1: Section user channel F2, F3: Path user channels G1: Path status byte H1, H2: Higher-order (AU) pointer H3: Pointer action byte H4: Multiframe indicator J0: Section (regenerator section) trace J1: Path trace J2: Lower-order path trace K1, K2: Automatic protection switching (APS) channel and line (multiplexer section) RDI K3: Path APS K4: Lower-order path APS M1: Line (multiplexer section) REI N1: Higher-order tandem connection N2: Lower-order tandem connection S1: Synchronization status V1, V2: Lower-order (TU) pointer V3: Lower-order pointer action byte V4: Reserved V5: Lower-order BIP-2, SLM, and status Z0, Z1, Z2: Growth bytes
Agere Systems Inc.
273
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Reference of SONET/SDH Terms and Comparisons (continued)
SONET/SDH Comparisons
Table 174. SONET/SDH Comparisons SONET SPE SPE and Pointer STS-3xN VT1.5 VT2 VT6 VTG Transport Overhead Section Overhead Line Overhead SDH VC AU STM-N TU-11 TU-12 TU-2 TUG-2 Section Overhead Regenerator Section Overhead Multiplexer Section Overhead
SONET/SDH New Terminology
Table 175. SONET/SDH New Terminology Was FERF: Far-End Receive Failure FEBE: Far-End Block Error Path Yellow Alarm C1: STS-1 Identifier First Z1: Growth Third Z1: Growth Z3: Growth Z4: Growth Z5: Growth Z6: Growth Z7: Growth Is RDI: Remote Defect Indicator REI: Remote Error Indicator (SDH only) RAI: Remote Alarm Indicator J0: Section Trace /Z0: Growth S1: Synchronization M1: Line REI F3: User Channel (SDH only) K3: APS (SDH only) N1: Tandem Connection (SDH only) N2: Tandem Connection (SDH only) K4: LO APS (SDH only)
274
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Outline Diagram
600-Pin LBGA
Dimensions are in millimeters.
45.00 0.10 A1 BALL IDENTIFIER ZONE
45.00 0.10
2.17/3.28
ELECTRICALLY ISOLATED HEAT SPREADER 1.43/1.92 SEATING PLANE 0.20 SOLDER BALL 34 SPACES @ 1.27 = 43.18
1.71/2.58 0.60 0.10
AR AP AN AM AL AK AJ AH AG AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A 1 2 3 4 5 6 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0.75 0.15
34 SPACES @ 1.27 = 43.18
A1 BALL CORNER
5-9212 (F)r.2
The dimensions in this outline diagram are intended for informational purposes only. For detailed schematics to assist your design efforts, please contact your Agere Sales Representative. Agere Systems Inc. 275
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
Ordering Information
Device Code TDAT042G51A-3BLL1 Package 600-pin LBGA Temperature -40 C to +85 C Comcode (Ordering Number) 108696006
276
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following Updates
1. Globally numbered all the transmit sequencer time slots the same, from 1 to 12. Affects Figures 13, 14, and 16, DE egress configuration registers Tx_TS (0x1016--0x1021), and DE ingress configuration registers Rx_TS (0x1022--0x102D). 2. Bad PPP header counter changed to mismatched PPP header counter globally. 3. Changed bit TRDIP_LCDINH[A--D] to TRDIP_LCD[A--D] thorughout document. 4. Page 1, the number of the IETF RFC standard was corrected from 1619 to 2615; the title is still the same. 5. Page 11, moved Description section from page 1 for readability. 6. Page 24, added the note about the TDAT042G5's internal circuitry under Table 3. 7. Page 25, Table 3, Pin Descriptions--Line Interface Signals, TxFSYNCP and TxFSYNCN pins. Corrected the inadvertent switch of Iu and Id in the I/O column, provided values for all Iu and Id, corrected cycle width in last sentence. 8. Page 27, Table 4, Pin Descriptions--TOH Interface Signals, clarified RxREF pin. 9. Pages 32, 38, and 164, TxSIZE_[D:A] and RxSIZE_[D:A] bits (address 0x0226), corrected bit and pin names in the register description and pin descriptions. 10.Page 33, Table 5, Pin AM18, AM30, AA35, and H32, under the Name/Description column, second paragraph, changed the wording to include the TxERR[A] and the TxERR[B] input pins. 11.Page 33--page 39, Table 5, Pin Descriptions--Enhanced UTOPIA Interface Signals, added "These pins are used only in U2+ and U3+ (packet) modes" to size, end-of-packet, and error receive pins and transmit pins. 12.Page 38, Table 5, Pin Descriptions--Enhanced UTOPIA Interface Signals, corrected "must be placed" to "will be placed" in the paragraph beginning with, "In U3+ (32-bit mode). . ." 13.Page 39, Table 5, Pin Descriptions--Enhanced UTOPIA Interface Signals, clarified RxERR pin. 14.Page 40, Table 6, Pin Descriptions--Microprocessor Interface Signals, clarified PMRST pin. 15.Page 42, Table 8, Pin Descriptions--JTAG Interface Signals, corrected TMS pin to be active-high. 16.Page 42, Table 8, Pin Descriptions--JTAG Interface Signals, expanded TRST description. 17.Page 45, Overview, corrected and expanded second paragraph. 18.Page 46, Overview, deleted any reference to cell-based UNI since not supported by this device. 19.Page 49, Overview, Over-Fiber Mode section, corrected transparent mode to over-fiber mode in this section. 20.Page 52, Transmit Line Interface Summary section, updated TxFSYNCP/N bullet item. 21.Page 53, SONET Framer, added section. 22.Page 55 (in revision 3 of data sheet), Table 16, Values of SFNSSET[A--D][18:0], SFMSET[A--D][7:0], SFLSET[A--D][3:0], SFBSET[A--D][15:0] in Terms of Equivalent BER for BIP-24 Case, removed table. 23.Pages 57--58, pages 187--188, and pages 208--209;Table 16,Table 17,Table 86,Table 87, Table 107, and Table 108; Ns, L, M, and B Values to Set the BER Indicator, Ns, L, M, and B Values to Clear the BER Indicator, updated tables and added them to the PT Registers section, also. 24.Pages 63, 200, and 205, SS pointer interpretation algorithm not implemented. Affects bit 5 of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE; corrected from RSSPTRNORM[A--D] to Reserved in Register Maps and Register Descriptions sections. Also affects bits 1--0 of register 0x0AC7; corrected from RSSEXP[1:0] to Reserved in Register Maps and Register Descriptions sections. Removed item 4 from the normal pointer description on page 63. 25.Page 65--Page 68, SPE Generate section, corrected and expanded. 26.Page 70, Data Engine (DE) Block section, expanded second paragraph. Agere Systems Inc. 277
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following Updates (continued)
27.Page 71, ATM Cell Processor section under Data Engine (DE) Block, expanded. 28.Page 75, PPP Header Detach section, added footnote and updated Figure 16, Uncompressed and Compressed PPP Packets. 29.Page 77 and page 94, HDLC Inserter in the Data Engine (DE) Block section and FIFO in the UT Transmit Input Path (Egress) section, corrected description of 0x7D20. 30.Page 82, Data Engine (DE) Block, Over-Fiber Modes section, clarified description. 31.Page 83, Transparent Payload Mode section, updated. 32.Page 85, Table 24, UTOPIA Traffic Types, updated. 33.Page 86, UTOPIA ATM Cell Processing section, added. 34.Page 88, added UT Clocking, UT Transmit Path (Egress) Clock, UT Receive Path (Ingress) Clock sections; removed Clocks section on page 91. 35.Page 90, Two-Cycle Delay Mode section, provided reference for RxPA[D:A] definition. 36.Page 91 and page 92, updated Figure 23, Receive-Side Interface Handshaking in Point-to-Point, Single Cycle Mode; added Figure 24, Receive-Side Interface Handshaking in Point-to-Point, Two-Cycle Mode. 37.Page 93, Transmit Cell/Packet Available (TxPA) section, expanded definition. 38.Page 94, Table 29, Egress High Watermark Thresholds, added. 39.Page 95, Figure 25, Transmit-Side Interface Handshaking in Point-to-Point, Single Cycle Mode, updated. 40.Page 96, Multi-PHY Support section, clarified the concept of point-to-point vs. polled mode configuration. 41.Page 100, JTAG (Boundary-Scan) Test Block section, added second paragraph. 42.Page 100, Reset of JTAG Logic section, added. 43.Page 100, Line Interface section added to document (including Table 30). 44.Page 102, General-Purpose I/O Bus (GPIO) section, expanded. 45.Page 105, Performance Monitor Reset (PMRST) section, expanded. 46.Page 106, Far-End Loopback,Terminal Loopback, Facility Loopback, expanded sections. 47.Page 108--page 110, Figur e34, SingleATM UTOPIA 3; Figur e36, Single POS UTOPIA 3, updated. 48.Page 112 and p age152, GPIO Output Configuration register (addresses 0x0014 and 0x0015), updated in Register Maps and Register Descriptions sections. 49.Pages 124--125, 191, TZ0DINS[A--D][2--12][7:0] registers (addresses 0x05AA--0x05C1), updated in the Register Maps and Register Descriptions sections. 50.Page 119, Register Maps section, corrected subtitle in OHP map from Signal Degrade Set/Clear Control Registers to Signal Degrade BER Algorithm Parameters. 51.Page 120, Register Maps section, corrected subtitle in OHP map from Signal Fail Set/Clear Control Registers to Signal Fail BER Algorithm Parameters. 52.Pages 119--121, 136, 185--186, 198, Register Maps and Register Descriptions sections, differentiated bitnames in OHP sections from bitnames in PT sections for signal degrade and signal fail BER algorithm parameters. 53.Pages 134--135, 199, changed bits [15:9] from Reserved to RPOHMONSEL[A--D][3:0] and RCONC_ALLOR FIRST[A--D] in the Register Maps and Register Descriptions sections. 278 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following Updates (continued)
54.Page 143, Register Maps section, corrected subtitle in DE map from PPP Detach--Rx Good Packet/Cell Counter (PMRST Update) to Receive Good Packet/Cell Counter (PMRST Update). 55.Page 143, Register Maps section, corrected subtitle in DE map from PPP Attach--Tx Good Packet/Cell Counter (PMRST Update) to Transmit Good Packet/Cell Counter (PMRST Update). 56.Page 150, updated register description of PLL_MODE bit (address 0x0010). 57.Page 151, Table 50, Register 0x0012: Loopback Control (R/W), updated description of valid combinations. 58.Page 157 and page158, clarified UTOPIA_MODE_Rx bit (addresses 0x020F, 0x0213, 0x0217, 0x021B) in the Register Maps and Register Descriptions sections. 59.Page 158, Table 61, Registers 0x020F, 0x0213, 0x0217, 0x021B: Channel [A--D] Receive Provisioning Register (R/W), corrected the reset default value of register 0x0217 from 0x0020 to 0x0220. 60.Page 158, clarified ATM_SIZE_Rx[A--D] bits (addresses 0x020F, 0x0213, 0x0217, 0x021B). 61.Page 160, corrected description ofPARITY_Tx[A] bit (addresses 0x0210, 0x0214, 0x0218, 0x021C). Corrected even parity from bit = 1 to bit = 0. 62.Page 160, clarified PARITY_Tx[B--D] bits (addresses 0x0210, 0x0214, 0x0218, 0x021C). 63.Page 160, clarified ATM_SIZE_Tx[A--D] bits (addresses 0x0210, 0x0214, 0x0218, 0x021C) and corrected "received" to "transmitted." 64.Page 161, Table 63, Bits 13--8, INGRESS_WATERMARK_HIGH_[A--D][6:0], changed the function definition to current one. 65.Pages 165--page 167, Table 72, Registers 0x0402--0x0409: Delta/Event (COR/W), deleted statement that the delta bits clear when read (or written). 66.Page 171, Table 76, Registers 0x0416--0x0419:Toggles (R/W), corrected and expanded note. 67.Page 173, LOS_AISINH[A--D] bit (addresses 0x0422, 0x0424, 0x0426, 0x0428), clarified the description. 68.Page 177 and page181, TJ0INS and TTOAC_J0 bits (addresses 0x042E, 0x0430, 0x0432, 0x0434), updated description. 69.Page 179 and page183, TM1_ERR_INS and TM1_REIL_INH bits (addresses 0x042E, 0x0430, 0x0432, 0x0434), updated description. 70.Page 200 and page201, RFORCE_LOP[A--D][1--12] and RFORCE_AIS[A--D] [1--12] bits (addresses 0x0AA7, 0x0AA8, 0x0AA9), updated description. 71.Page 201, Table 103, address 0AAA, 0AB2, 0ABA, OAC2, bit 9, name TRDIP_LCD[A--D], changed the function definition to the current one. 72.Page 201 and page 202, TRDIP_LCD[A--D], TRDIP_PLMPINH[A--D], TRDIP_UNEQUIPINH [A--D] bits, corrected the bit numbers from 7, 9, 8, to the bit numbers 9, 8, 7, respectively. 73.Page 212 and page 213,Table 112, Register 0x1001, 0x1002: DE Interrupts (0x1001 is RO, 0x1002 is RO and COR/W), register 0x1002, updated note, added footnote, and corrected the placement of bits of 7--4 and 3--0 which were interposed. 74.Page 226, Table 120, ReceiveType and Mode Control SummaryTable (Registers 0x1040--0x1043), clarified bits [1:0] for ATM. 75.Page 235, PPP_Rx_HDR [0--11][15:0] registers (addresses 0x10F0--0x10FB), corrected name and description. 76.Page 236, PPP_Rx_CHK_CH [0--3][15:0] registers (addresses 0x10FC--0x10FF), bits 15--14, updated description. Agere Systems Inc. 279
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following Updates (continued)
77.Page 241, PM_MHC_[0--3][27:0] registers (addresses 0x1118--0x111F), updated name and description. 78.Page 250, Table 158, Registers 0x1600--0x1607: SDL Transmit Registers (R/W), updated note. 79.Page 253, Absolute Maximum Ratings, corrected text above table to refer to permanent damage and to the data sheet; removed typical power supply value. 80.Page 253, Table 159, Recommended Operating Conditions, updated power dissipation. 81.Page 254, Table 160, 3.3 V Logic Interface Characteristics, updated load capacitance. 82.Page 255, Table 162, added table to document. 83.Pages 256, 258, 262, Microprocessor Interface Timing section, updated figures (Figure 38, Figure 39, Figure 41) and text in section. 84.Page 260, Asynchronous Mode in Microprocessor Interface Timing section, updated text and corrected t28 in Table 165, Microprocessor Interface Asynchronous Write Cycle Specifications. Corrected t28 min from 0 ns to 77 ns. Corrected t28 max from 72 ns to 103 ns. 85.Page 263, Asynchronous Mode in Microprocessor Interface Timing section, corrected t38 in Table 166, Microprocessor Interface Asynchronous Read Cycle Specifications. Corrected t38 min from 0 ns to 90 ns. Corrected t38 max from 34 ns to 115 ns. 86.Pages 264--page 265, Figure 42, Receive Line-Side Timing Waveform--Figure 45, Transmit Line-Side Timing Waveform--STS-48/STM-16 Forward Clocking, updated. 87.Page 266, Table 167, Receive Line-Side Timing Specifications and Table 168, Transmit Line-Side Timing Specifications; replaced tables labeled Clock Input Specifications, Line Input Specifications, and Line Output Specifications with these tables. 88.Page 268 and page 269, UTOPIA Interface Timing section, updated receive and transmit figures and tables. 89.Page 271,Transport Overhead Access Channel (TOAC) Interface Timing section, updated transmit and receive figures and tables. 90.Page 275, updated 600-pin LBGA package outline.
280
Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Agere Systems Inc.
281
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet May 2001
For additional information, contact your Agere Systems Account Manager or the following: INTERNET: http://www.agere.com E-MAIL: docmaster@micro.lucent.com N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC Tel. (86) 21 50471212, FAX (86) 21 50472266 JAPAN: Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 EUROPE: Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Copyright (c) 2001 Agere Systems Inc. All Rights Reserved Printed in U.S.A.
May 2001 DS98-193SONT-04 (Replaces DS98-193SONT-03 Must Acompany DA01-010SONT and AY01-015SONT)


▲Up To Search▲   

 
Price & Availability of TDAT042G51A-3BLL1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X